
Journal of Science and Engineering Research

Vol. 2, No. 1, 2023, pp.17-28

eISSN: 2957-7187

Copyright ⓒ 2023

Semantic Code Search using Hugging Face Transformer

Harshil Gandhi
1
 and Jinan Fiaidhi

2*

1,2*
Department of Computer Science, Lakehead University, Canada

2*
jfiaidhi@lakeheadu.ca

DOI: http://dx.doi.org/10.56828/jser.2023.2.1.3

Article history: Received (December 2, 2022); Review Result (February 1, 2023);

Accepted (April 3, 2023)

Abstract: Semantic code search is a well-defined task to retrieve relevant code snippets for

the inserted language query. The semantic code search is an information retrieval task

designed to help software engineers reuse the appropriate Code instead of writing the same

Code repeatedly. This task closes the gap between the language used in code development

and the language used in queries. Our approach here defines by creating a unique dataset in a

python programming language, pre-processing the dataset, and training the machine learning

model to get the result. A pertained state-of-the-art machine learning model from the hugging

face library has been used to answer a search query. A Sequence-Sequence encoder using an

attention mechanism also trains the dataset and produces the desired output. With the help of

parsing and natural language processing techniques, we can create a semantic code search

engine for Python datasets.

Keywords: Face transformer, Semantic code, Dataset, Artificial intelligence, Machine

learning

1. Introduction

Code searching is one of the frequent tasks in software engineering. Software engineers

often look for the piece of Code on the internet which complies with the project one is

working on. To implement certain functionality, i.e., "sort the array," the developer uses the

relevant Code queried on the larger codebase. Machine learning assembled with natural

language processing and modern, powerful training tool revolutionized the training of

machine learning models for trivial tasks. With this advancement, the training of a large

corpus made the training easy and curbed down the computational time. Most of the previous

research on information retrieval was done under keyword-based search. However, from the

BERT algorithm [1] used by Google for information retrieval, AI and machine learning were

introduce for information retrieval tasks [2].

There are mainly two types of search techniques. First, Keyword bases search, a

conventional search approach [2], was used at the early stage of the search engine revolution.

In this approach, the search engine looks for the exact words in the query, and as a result, it

gives only those returns in which the keyword has appeared. This technique leads to a result

with the same value or word. There is no middle ground; there is no understanding of the

context of a query. To resolve this problem, semantic code search was introduced. The

semantic search understands the inserted query's context and what is being searched and gives

Semantic Code Search using Hugging Face Transformer

Harshil Gandhi and Jinan Fiaidhi 18

desired and relevant results. The semantic search techniques use ontology [3], while keyword-

based search uses a page ranking algorithm to find results. The semantic search not only

focuses on the keyword but also on other relationships between different types of resources.

One of the most powerful advantages of sematic-based search is that it can solve complex

queries.

In this research paper, we have introduced new machine-learning techniques with the help

of a state-of-the-art natural language processing model generated by a semantic information

retrieval engine. The main contribution of this paper is as follows:

 Generate and preprocess dataset for Semantic code search model

 Train the dataset using the Hugging face Albert transformer model

 Train the dataset using an encoder-decoder with a multi-head attention mechanism

 using k nearest neighbor, find the top 5 relevant results using cosine similarities.

Following is the flow chart of the system implemented in this paper.

Figure 1: Flow chart of paper

2. Related Research Work

Code search is one of the recent areas of research. Following are some of the research

works which has been in this field over the last few years.

Semantic Code Search using Code2Vec: A Bag-of-paths model

Lakshmanan Arumugam [3] developed a semantic code search using the Code2Vec bag-

of-path model. He followed the neural model because it showed semantic meaning and could

represent natural language using the vector used in various NLP tasks. In particular, the

author evaluated the performance of a semantic search task for code snippets using

Code2Vec, a model for learning a distributed representation of source code called code

embedding. The main idea behind the use of Code2Vec is that the source code is structurally

different from natural language [4], and models that use the syntactic properties of the source

code help learn semantic properties. The author combined Code2Vec with other neural

models representing natural language through vectors to create a better hybrid model than

previous benchmark-based models. The author also examined the impact of various metadata

Collect the data`

Parse the data
into readable

format

Load the dataset
Create a Trained

Albert model

Create a Seq-Seq
multi-head

attention model

Train the model Test the model

Insert a query

Get the results

Journal of Science and Engineering Research

Copyright ⓒ 2023 19

on the retrieved code snippets in terms of relevance. The model was evaluated using the

BLEU algorithm [5]. BLEU is an algorithm for assessing the quality of text machine-

translated from one natural language to another.

Code snippets are encoded by the migrated and implemented Code2Vec model, and the

documentation for each code snippet is tokenized and encoded using one of the benchmark

baseline query encoders. Query encoding uses an NBoW (Natural Bag of Words) technique

that transforms each query token into a learnable embedding called a vector representation

[6]. The author created the top 10 results using two data points, predictions calculated during

the search, and a reranking algorithm based on repository metadata. The reciprocal rank (RR)

is an information retrieval measure that calculates the reciprocal of the rank from which the

first relevant document was obtained.

CodeSearchNet Challenge: -Evaluating the State of Semantic Code Search

Hamel Husan and Mitiadis Allamanis presented a code search net challenge in the poll

above. They programmatically defined a custom corpus created by scraping open-source

repositories and combining their functionality with documents treated as natural language

annotations. In addition, we used a deep learning model to train the data for this task. In this

study, the author created a dataset consisting of millions of functions that map to six

programming languages and their corresponding programming languages. The dataset was

collected from GitHub, and the Code was parsed using Treesitter, GitHub's universal parser

[7].

In developing the Code, search engines used simultaneous embedding of code and search

queries. The architecture of the author's model uses one encoder per input language and trains

them to map the inputs to a single common vector space. The author's goal is to map the Code

to the appropriate language. The authors have implemented a search method by embedding a

query and returning the Code for a snippet close to vector space relative to the vector. To

learn these embedded functions, the author combines a standard sequel model. First, the Code

is preprocessed and converted to sub-tokens; then, the natural language tokens are split into

byte pair encodings. In addition to their research, it included Elasticsearch [8], a widely used

search engine. The author trains the model by keyword matching with a set of word models.

Deep Code Search

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim have developed deep code search engines

that use deep learning and neural network models and NLP preprocessing techniques for deep

code search. This model is trained with over 18.2 million Java code snippets and the CODEnn

model and is evaluated on Stack Overflow for 50 simple queries [9].

Here we introduce a recurrent neural network for embedding sequential data. An RNN is a

class of neural networks in which the hidden layers of a model are continuously used for

computation. Use this to record dynamic movements over time. CODEnn's neural network

architecture consists of three modules. A code embedding network for source code and a

descriptive embedding network for embedding natural language descriptions in vectors. This

similarity engine measures the degree of similarity between Code and description. In this

study, the entire dataset corpus consists of only JAVA code snippets, so we will perform

preprocessing to extract the training corpus method names, tokens, and API sequences. When

searching for code snippets, the code vector for each code snippet is calculated and returned

first. This high-level code snippet shows the high-level K vector closest to the query vector.

The author uses frankness, success rate, accuracy, and medium-sized mutual rank for model

evaluation. The author mainly uses the first hit of the flank and the result list. Users must scan

the results from top to bottom. Smaller frank means lower inspection efforts to find desirable

Semantic Code Search using Hugging Face Transformer

Harshil Gandhi and Jinan Fiaidhi 20

results. The author uses Frank to evaluate the validity of a single code search query. The

results are displayed by comparing DeepCodeSearch with other algorithms such as "Lucene"

and "Codehow." [10][11] This shows that DeepCS generally produces something more

relevant result.

3. Dataset Collection and Preprocessing

To get the data required for our semantic code search engine, we have created our own 32

Python files: consisting of different functions, function descriptions, multiple functions in the

same file, and classes in a Python file. These Python files will be helpful to create a general-

purpose search engine. Figure 2(a) shows an example of the function of a Python file.

According to Python docs, a Python function is consisting of a decorator, docstring, function

signature, and function definition.

Figure 2(a): Ideal function structure

Figure 2(b): Description of extracted data

Consider Figure 2(a), in which a Python function is defined. Using the parsing method and

function name, function docstring and function code have been extracted, shown in Figure

2(b). Function details will use further in this research.

After collecting the desired information of a Python file using parsing, we need to pre-

process the data, so the dataset will be easy to learn for the machine learning model. The

following are pre-processing methods implemented on the data.

Create Function-docstring Pairs

After gathering the dataset our next steps will be to create a function-docstring pair of each

python file. Firstly, the Python file is compiled using the "trackback" [12] library in Python to

check if there is any compilation error in the file; if there is an error, then the function or a

Python file will be excluded from the dataset. After compilation, we need to extract the

@ Decorator

def addition(x,y):

 ―this is the function for addition of two numbers‖

 ―‖‖ Input arguments: - a,b must be int

 Return addition of a and b‖‖‖

 return a+b

Decorator Function name

Docstring

Function signature

Function name: - addition(x,y)

Function description: -this is the function for addition of two numbers

Function Code: - return a+b

Journal of Science and Engineering Research

Copyright ⓒ 2023 21

function name and docstring from the given Python file. We will be using the AST [13]

module in Python, which converts the Python code into an abstract syntax tree for analysis.

So here we are, keen on extracting the function name and its corresponding docstring

signature. So, with the help of ―trackback‖ [12] and ―nltk RegexpTokenizer" [24], we extract

both things and tokenize them. One reason behind tokenization is that it removes punctuation

and decorators and converts the whole text into lowercase. Figure 3 shows the example of the

function-docstring pair.

Remove the Duplicate

All duplicate entries related to the function definition or function token are removed. This

is done to prevent weights/biases from being added to string pairs in certain function

documents during training. This is because more entries on specific data can affect your

training. In this study, we have a relatively small dataset. This feature is included for large

datasets.

Remove the Function without Docstring

In this study, we perform supervised machine learning. Therefore, a well-structured and

defined dataset is required for more accurate results. As with this study, there are two critical

things. The Code and the corresponding docstring. However, some functions do not have a

docstring in the real world, are too short, or are poorly described. Here, some of these cases

are excluded from the dataset.

Split the Dataset

Splitting the dataset is one of the most important in the field of machine learning. In this

study, we divided data into three things, training dataset, validation dataset, and testing

dataset. The ratio of the splitting dataset is 80:10:10 for the train:validation:test [14].

Figure 3: Dataframe of the dataset with source code and function-docstring pairs

Figure 4(a): Dataset split into function name, pair, and line of number

Semantic Code Search using Hugging Face Transformer

Harshil Gandhi and Jinan Fiaidhi 22

Figure 4(b): Dataset split into function tokens and docstring tokens

4. Convert Docstring to Embedding using a Transformer

After collecting, preprocessing, and splitting the dataset, the next part will help you

understand one of the presented data docstrings into a vector and gain great insight into the

data. This search uses the Albert transformer [15] provided by the hugging face [16] library to

convert the document string to a vector. This section explains why you should choose Albert,

how to use this dataset to train transformers, and finally how to convert docstring to vector.

Albert stands for "A Lite Bidirectional Encoder Representation." Albert is one of the

transformers of a BERT family introduced by Google. Albert is an upgrade from BERT,

which advances the state-of-the-art performance in 12 over NLP tasks, and some of them are

Standford Question Answering Dataset. The Albert is implemented on top of TensorFlow,

combined with a pre-trained Albert model. Choosing Albert over other transformers is

parameter sharing, smaller word embeddings, and sentence over prediction. Here we will be

using Albert's pretraining model, which can be found on the TensorFlow hub. The reason

behind choosing a pre-trained model is that it can save us time and resources for building a

machine-learning model from scratch. Here for training, our dataset is docstring which is

nothing but an English representation of how the Albert transformer is trained.

Albert has an encoder number similar to the BERT transformer, but Albert shares weights

between encoders and treats Albert as a single encoder with multiple embeddings applied.

This significantly improves training speed and reduces specific parameters across Albert's

models. Also, since only one set of weights is stored, the model takes up much less space on

GPU memory. The parameter-sharing technique also serves as a form of regularization that

stabilizes training and aids in generalization. The author of Albert suggests several ways to

share parameters, such as ALBERT's default decision is to share all parameters between

layers.

Another advantage of Albert is the small embedding, with only 1/6 of the BERT

embedding with 128 features. This is one of the reasons why the Albert Transformer has a

small number of parameters. This will speed up model training, lose weight and help the

model learn a better display. Another advantage of the transformers, as mentioned above, is

that they can predict the order of sentences. Albert is trained in a sentence ordering task that

defines whether the two sentences are coherent, that is, what comes before and after.

Training of Albert Transformer

Now that we have a pre-trained Albert Transformer model, we need to tune the model to

work with a particular dataset. First, the pre-trained model needs to be refined because it is

trained on many English word datasets. Perform incremental training on a pre-trained Albert

model using the docstrings collected from the dataset for fine-tuning. Here we need to

generate and create escaped sentence pairs so that the model uses n-gram escaped language

Journal of Science and Engineering Research

Copyright ⓒ 2023 23

modeling. We could use the same word file author used to train the Albert model. However,

some docstring programming contexts have different meanings than English words.

Therefore, we will use the Docstring dataset and the Albert model to create pre-training data

for Albert's model. This dataset will be further used for incremental training [17] to fine-tune

the Albert model. After training the entire model, the Docstring is transformed into 768

dimensions of the vector for further processing. This is how the Docstring is converted to a

vector.

5. Function Token to Embedding Vector

The previous section will convert the Docstring to a 768-dimensional vector. Therefore,

this section transforms the function token into the same 768-dimensional vector so that both

the function token and the corresponding document string are in the shared vector space. If

those values are very similar to the vector generated for the corresponding document string,

then the function vector in the shared vector space is called. This helps in interpreting the

code and generating the code vector. Figure 5 shows the architecture of the transformer model

used for the translation [18].

Figure 5: Transformer model architecture for translation

We start by generating a vocabulary of docstrings and function codes and converting them

to IDs. This is also known as the index position of the token in the vocabulary. Use

BertWordPieceTokenizer. This improves your vocabulary and reduces the breakthroughs of

common words into subwords. In addition, add start and end tokens to the vocabulary you

want to model to recognize the start and end of a function or document string. Other features

such as padding and masking are also used in the vocabulary. If you use padding to create the

same number of vectors and understand the existence of a transformer model for the padding

masking method, not all docstrings or function tokens contain the same number of tokens. In

addition, after this preprocessing, the transformer model is trained at 100 epochs to predict the

writing of functional code. Figure 6 shows some of the results of predicted and actual

function translation with the help of a machine learning model. In the first result, we can see

that model predicted the docstring perfectly while in the second we can see the exact

opposite.

Semantic Code Search using Hugging Face Transformer

Harshil Gandhi and Jinan Fiaidhi 24

Function Code
insertion sort elements for in range 1 len elements anchor elements 1 while 0

and anchor elements elements 1 elements 1 elements 1 anchor
Predicted docstrig perform an insertion sort for given n elements of array
Actual Docstring perform an insertion sort for given n elements of array

Function Code
decrypt cipher list int key list int str plain for in range len key int cipher key 2

key plain append chr return join for in plain
Predicted

Docstring
function to convert a decimal to binary

Actual Docstring function to decrypt text using pseudo-random numbers

Figure 6: Output from the precision of docstring

After creating a model which can encode function to docstring successfully, we create the

dataset by encoding the function tokens with the transformer model and generate the 768

dimensions of the vector for each function token. After this, the function token and the

docstring will be in the same vector space. Figure 7 shows the architecture of the Transformer

model used for vectorization.

Figure 7: Transformer model architecture for the vectorization

6. Cosine Similarities

In this section, we will be going over how we get the result for the inserted query and how

to find the similarity in the docstring to the corresponding function code. In this section, we

have chosen cosine similarity over all the other similarity methods because cosine similarity

can understand the context and give relevant results.

In data analysis, cosine similarity measures the similarity between two sequences. The

sequence is considered a vector of inner product space, and the sine similarity is defined as

the inner product of the angles between them, that is, the inner product of the vectors divided

by the product of the lengths. Therefore, the cosine similarity does not depend on the

Journal of Science and Engineering Research

Copyright ⓒ 2023 25

magnitude of the vector, only on the vector's angle. Cosine similarity always belongs to the

interval [1,1]. For example, two proportional vectors have a cosine similarity of 1, two

orthogonal vectors have 0, and two opposite vectors have a similarity of 1. Cosine similarity

is primarily used in positive spaces where the result is limited by [0,1] [19].

For example, in information retrieval and text mining, each word is assigned different

coordinates, and the document is represented by a vector that represents the number of times

each word appears in the document. Second, cosine similarity is a valuable measure of how

similar two documents are in subjects, regardless of the length of the document.

Following is the mathematical representation of the cosine similarity. Consider two vectors

a and b, [20].

 ⃗ ⃗⃗

‖ ⃗‖ ‖

→‖

7. Finding the Results

Nsmlib[21] creates a hierarchical, navigable Small world graph for each function vector

used for the search. The Small World Graph is a mathematical graph in which the overall

distance between two randomly selected nodes increases in proportion to the number of nodes

in the network. To find the node closest to the query point, one can use the Smallworld

property to navigate the graph quickly and efficiently to find the approximate closest

node.[22] Use the greedy approach to select any node in the graph randomly, calculate the

distance of the adjacent node from the query point of the selected node, and find the adjacent

node closest to the query point. If the adjacent node found is closer to the query point than the

selected node, move to that node and continue moving in that direction. Follow the same

process to find the adjacent node for that node. This is the node closest to the dem query

point. This continues until you reach a node with no nodes adjacent to the query point. This

node is declared as the neighbor closest to the query point.

Now, we need to find the relevant result for the inserted query. Albert transformer model,

which was fine-tuned and trained on the desired dataset, will be used to encode inserted query

into a 768-dimensional vector. Using the cosine similarity and k-nearest-algorithm, for all the

feature vectors identical to the search query vector, the top 5 answers will be extracted, and

by using the index from the dataset, relevant code will be displayed. Figures 8(a) and (b)

show the top 2 answers for the inserted query "Matrix multiplication." In the results, we can

observe that the model understands the inserted query's semantics. Both the output shows the

relevant result for the matrix. However, figure 8(b) shows the Python code for matrix

multiplication using a list, the desired output for an inserted query.

Semantic Code Search using Hugging Face Transformer

Harshil Gandhi and Jinan Fiaidhi 26

Figure 8(a): First answer for the inserted query

Figure 8(b): Second answer for the inserted query

8. Conclusion and Future Enhancements

To conclude, in this research, we propose a new approach for semantic code search by

using an Albert transformer from hugging face and a seq-seq encoder with a multi-head

attention mechanism from a pool of Python code. In this research, by creating own dataset

and custom pre-processing techniques such as a unique dataset founded. i.e., python code

with compilation error is excluded. Using the Albert model, we converted a text format of a

docstring to a 768 dimension of the vector. In addition to that, by creating a custom

transformer model aligned with the seq-seq encoder, we encoded a function code to a 768-

dimension vector so both function and docstring will be in shared vector space. By using

cosine similarity and the k-nearest-neighbor algorithm, we will be able to extract the top 5

results for an inserted query.

However, we are doing supervised learning for a machine learning model by using the

given data in this research. A situation may arise when there is no relevant code for the

def inverse(matrix: list[list]) ->(list[list] | None):

 """

 Inverse of a matrix a with n Dimension

 """

 det = determinant(matrix)

 if det == 0:

 return None

 matrix_minor = [[determinant(minor(matrix, i, j)) for j in range(len(

 matrix))] for i in range(len(matrix))]

 cofactors = [[(x * (-1) ** (row + col)) for col, x in enumerate(

 matrix_minor[row])] for row in range(len(matrix))]

 adjugate = list(transpose(cofactors))

 return scalar_multip(adjugate, 1 / det)

cosine dist:0.0856

 def multiply(matrix_a: list[list], matrix_b: list[list]) ->list[list]:

 """

 Regular matrix multiplication using list

 """

 if _check_not_integer(matrix_a) and _check_not_integer(matrix_b):

 rows, cols = _verify_matrix_sizes(matrix_a, matrix_b)

 if cols[0] != rows[1]:

 raise ValueError(

 f'Cannot multiply matrix'

)

 return [[sum(m * n for m, n in zip(i, j)) for j in zip(*matrix_b)] for

 i in matrix_a]

Journal of Science and Engineering Research

Copyright ⓒ 2023 27

corresponding inserted query. So, to improve this research, firstly, we can collect more data;

secondly, we can create an automatic code generation aligned with this research, which can

create a relevant code for the query even though the corresponding code is not available in the

dataset. In addition to that, in this research, we only focused on Python language code;

however, in further research work, we can focus more on the multi-programming language

code search by using the latest transformer.

References

[1] Devlin, J., Chang, M. –W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional

transformers for language understanding. arXiv, 2018, https://arxiv.org/abs/1810.04805.

[2] Semantic Search using NLP, Ajit Rajput Aug 31, 2020. https://medium.com/analytics-vidhya/semantic-

search-engine-using-nlp-cec19e8cfa7e.

[3] Arumugam, L. (2020). Semantic code search using Code2Vec: A bag-of-paths model.

[4] Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). Code2vec: Learning distributed representations of

code. Proc. ACM Program. Lang. 3, POPL, Article 40 January, 29 pages. DOI:

https://doi.org/10.1145/3290353.

[5] A Gentle Introduction to Calculating the BLEU Score for Text in Python by Jason Brownlee on November 20,

2017, https://machinelearningmastery.com/calculate-bleu-score-for-text-

python/#:~:text=BLEU%2C%20or%20the%20Bilingual%20Evaluation,of%20natural%20language%20proce

ssing%20tasks.

[6] Top 4 Sentence Embedding Techniques Using Python! purva91 — August 25, 2020,

https://www.analyticsvidhya.com/blog/2020/08/top-4-sentence-embedding-techniques-using-python/.

[7] Husain, H., Wu, H. –H., Gazit, T., Allamanis, M., & Brockschmidt, M. (2019). CodeSearchNet Challenge:

Evaluating the State of Semantic Code Search.

[8] Simple Search Engine with Elastic Search, Jul 14, 2020, Vivek Vinushanth Christopher.

https://towardsdatascience.com/simple-search-engine-with-elastic-search-d36086591d26.

[9] Lv, F., Zhang, H., Lou, J. –G., Wang, S., Zhang, D., & Zhao, J. (2015). CodeHow: Effective code search

based on API understanding and extended boolean model (E). 260-270. DOI: 10.1109/ASE.2015.42.

[10] Białecki, A., Muir, R., & Ingersoll, G. Apache Lucene, vol.4, pp.17-24.

[11] Lv, F., Zhang, H., Lou, J. –G., Wang, S., Zhang, D., & Zhao, J. (2015). CodeHow: Effective code search

based on API understanding and extended boolean model (E). pp.260-270. DOI: 10.1109/ASE.2015.42.

[12] Traceback in Python, 01 Aug 2020, https://www.geeksforgeeks.org/traceback-in-

python/#:~:text=Traceback%20is%20a%20python%20module,stack%20trace%20at%20any%20step.

[13] Deciphering Python: How to use Abstract Syntax Trees (AST) to understand code, MATT LAYMAN.

https://www.mattlayman.com/blog/2018/decipher-python-ast/.

[14] How do you Split Data into Training and Testing Sets in Python using sklearn?

https://www.askpython.com/python/examples/split-data-training-and-testing-set.

Semantic Code Search using Hugging Face Transformer

Harshil Gandhi and Jinan Fiaidhi 28

[15] Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). ALBERT: A Lite BERT for

self-supervised learning of language representations. arXiv 2019. https://arxiv.org/abs/1909.11942.

[16] HuggingFace Library - An Overview. Lalithnarayan C, https://www.section.io/engineering-

education/hugging-face/.

[17] Run masked LM/next sentence masked_lm pre-training for ALBERT. https://github.com/google-

research/albert/blob/master/run_pretraining.py.

[18] How to Develop an Encoder-Decoder Model with Attention in Keras by Jason Brownlee on October 17, 2017.

https://machinelearningmastery.com/encoder-decoder-attention-sequence-to-sequence-prediction-keras/.

[19] Cosine Similarity – Understanding the Math and how it Works, October 22 2018, by Selva Prabhakaran.

https://www.machinelearningplus.com/nlp/cosine-similarity.

[20] How to calculate Cosine Similarity. https://clay-atlas.com/us/blog/2020/03/27/cosine-similarity-text-

calculate-python/.

[21] Approximate Vector Search using NMSLIB. https://radimrehurek.com/gensim/similarities/nmslib.html.

[22] Logvinov, A., Ponomarenko, A., Krylov, V., & Malkov, Y. (2010). Metrized small world approach for

nearest neighbor search. DOI: 10.15514/SYRCOSE-2010-4-30.

[23] Code reuse: How to reap the benefits and avoid the dangers, by Ken Prole, Nov 12, 2018,

https://codedx.com/blog/code-reuse-how-to-reap-the-benefits-and-avoid-the-dangers/.

[24] Python NLTK | tokenize.regexp(), 07 Jun, 2019, https://www.geeksforgeeks.org/python-nltk-tokenize-regexp/

[25] BERT: Google’s New Algorithm That Promises to Revolutionize SERPs, Larissa Lacerda, Nov 30, 2020.

https://rockcontent.com/blog/google-

bert/#:~:text=In%20Google%2C%20BERT%20is%20used,content%20just%20as%20we%20do.

