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Abstract: Semantic code search is a well-defined task to retrieve relevant code snippets for 

the inserted language query. The semantic code search is an information retrieval task 

designed to help software engineers reuse the appropriate Code instead of writing the same 

Code repeatedly. This task closes the gap between the language used in code development 

and the language used in queries. Our approach here defines by creating a unique dataset in a 

python programming language, pre-processing the dataset, and training the machine learning 

model to get the result. A pertained state-of-the-art machine learning model from the hugging 

face library has been used to answer a search query. A Sequence-Sequence encoder using an 

attention mechanism also trains the dataset and produces the desired output. With the help of 

parsing and natural language processing techniques, we can create a semantic code search 

engine for Python datasets. 

 

Keywords: Face transformer, Semantic code, Dataset, Artificial intelligence, Machine 

learning 

1. Introduction 

Code searching is one of the frequent tasks in software engineering. Software engineers 

often look for the piece of Code on the internet which complies with the project one is 

working on. To implement certain functionality, i.e., "sort the array," the developer uses the 

relevant Code queried on the larger codebase. Machine learning assembled with natural 

language processing and modern, powerful training tool revolutionized the training of 

machine learning models for trivial tasks. With this advancement, the training of a large 

corpus made the training easy and curbed down the computational time. Most of the previous 

research on information retrieval was done under keyword-based search. However, from the 

BERT algorithm [1] used by Google for information retrieval, AI and machine learning were 

introduce for information retrieval tasks [2]. 

There are mainly two types of search techniques. First, Keyword bases search, a 

conventional search approach [2], was used at the early stage of the search engine revolution. 

In this approach, the search engine looks for the exact words in the query, and as a result, it 

gives only those returns in which the keyword has appeared. This technique leads to a result 

with the same value or word. There is no middle ground; there is no understanding of the 

context of a query. To resolve this problem, semantic code search was introduced. The 

semantic search understands the inserted query's context and what is being searched and gives 
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desired and relevant results. The semantic search techniques use ontology [3], while keyword-

based search uses a page ranking algorithm to find results. The semantic search not only 

focuses on the keyword but also on other relationships between different types of resources. 

One of the most powerful advantages of sematic-based search is that it can solve complex 

queries. 

In this research paper, we have introduced new machine-learning techniques with the help 

of a state-of-the-art natural language processing model generated by a semantic information 

retrieval engine. The main contribution of this paper is as follows: 

 Generate and preprocess dataset for Semantic code search model 

 Train the dataset using the Hugging face Albert transformer model 

 Train the dataset using an encoder-decoder with a multi-head attention mechanism 

 using k nearest neighbor, find the top 5 relevant results using cosine similarities. 

Following is the flow chart of the system implemented in this paper. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flow chart of paper 

2. Related Research Work 

Code search is one of the recent areas of research. Following are some of the research 

works which has been in this field over the last few years. 

Semantic Code Search using Code2Vec: A Bag-of-paths model 

Lakshmanan Arumugam [3] developed a semantic code search using the Code2Vec bag-

of-path model. He followed the neural model because it showed semantic meaning and could 

represent natural language using the vector used in various NLP tasks. In particular, the 

author evaluated the performance of a semantic search task for code snippets using 

Code2Vec, a model for learning a distributed representation of source code called code 

embedding. The main idea behind the use of Code2Vec is that the source code is structurally 

different from natural language [4], and models that use the syntactic properties of the source 

code help learn semantic properties. The author combined Code2Vec with other neural 

models representing natural language through vectors to create a better hybrid model than 

previous benchmark-based models. The author also examined the impact of various metadata 
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on the retrieved code snippets in terms of relevance. The model was evaluated using the 

BLEU algorithm [5]. BLEU is an algorithm for assessing the quality of text machine-

translated from one natural language to another. 

Code snippets are encoded by the migrated and implemented Code2Vec model, and the 

documentation for each code snippet is tokenized and encoded using one of the benchmark 

baseline query encoders. Query encoding uses an NBoW (Natural Bag of Words) technique 

that transforms each query token into a learnable embedding called a vector representation 

[6]. The author created the top 10 results using two data points, predictions calculated during 

the search, and a reranking algorithm based on repository metadata. The reciprocal rank (RR) 

is an information retrieval measure that calculates the reciprocal of the rank from which the 

first relevant document was obtained. 

CodeSearchNet Challenge: -Evaluating the State of Semantic Code Search 

Hamel Husan and Mitiadis Allamanis presented a code search net challenge in the poll 

above. They programmatically defined a custom corpus created by scraping open-source 

repositories and combining their functionality with documents treated as natural language 

annotations. In addition, we used a deep learning model to train the data for this task. In this 

study, the author created a dataset consisting of millions of functions that map to six 

programming languages and their corresponding programming languages. The dataset was 

collected from GitHub, and the Code was parsed using Treesitter, GitHub's universal parser 

[7]. 

In developing the Code, search engines used simultaneous embedding of code and search 

queries. The architecture of the author's model uses one encoder per input language and trains 

them to map the inputs to a single common vector space. The author's goal is to map the Code 

to the appropriate language. The authors have implemented a search method by embedding a 

query and returning the Code for a snippet close to vector space relative to the vector. To 

learn these embedded functions, the author combines a standard sequel model. First, the Code 

is preprocessed and converted to sub-tokens; then, the natural language tokens are split into 

byte pair encodings. In addition to their research, it included Elasticsearch [8], a widely used 

search engine. The author trains the model by keyword matching with a set of word models. 

Deep Code Search 

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim have developed deep code search engines 

that use deep learning and neural network models and NLP preprocessing techniques for deep 

code search. This model is trained with over 18.2 million Java code snippets and the CODEnn 

model and is evaluated on Stack Overflow for 50 simple queries [9].  

Here we introduce a recurrent neural network for embedding sequential data. An RNN is a 

class of neural networks in which the hidden layers of a model are continuously used for 

computation. Use this to record dynamic movements over time. CODEnn's neural network 

architecture consists of three modules. A code embedding network for source code and a 

descriptive embedding network for embedding natural language descriptions in vectors. This 

similarity engine measures the degree of similarity between Code and description. In this 

study, the entire dataset corpus consists of only JAVA code snippets, so we will perform 

preprocessing to extract the training corpus method names, tokens, and API sequences. When 

searching for code snippets, the code vector for each code snippet is calculated and returned 

first. This high-level code snippet shows the high-level K vector closest to the query vector. 

The author uses frankness, success rate, accuracy, and medium-sized mutual rank for model 

evaluation. The author mainly uses the first hit of the flank and the result list. Users must scan 

the results from top to bottom. Smaller frank means lower inspection efforts to find desirable 
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results. The author uses Frank to evaluate the validity of a single code search query. The 

results are displayed by comparing DeepCodeSearch with other algorithms such as "Lucene" 

and "Codehow." [10][11] This shows that DeepCS generally produces something more 

relevant result. 

3. Dataset Collection and Preprocessing 

To get the data required for our semantic code search engine, we have created our own 32 

Python files: consisting of different functions, function descriptions, multiple functions in the 

same file, and classes in a Python file. These Python files will be helpful to create a general-

purpose search engine. Figure 2(a) shows an example of the function of a Python file. 

According to Python docs, a Python function is consisting of a decorator, docstring, function 

signature, and function definition. 
 

 

 

 

 

 

 

Figure 2(a): Ideal function structure 

 

 

 

 

Figure 2(b): Description of extracted data 

Consider Figure 2(a), in which a Python function is defined. Using the parsing method and 

function name, function docstring and function code have been extracted, shown in Figure 

2(b). Function details will use further in this research. 

After collecting the desired information of a Python file using parsing, we need to pre-

process the data, so the dataset will be easy to learn for the machine learning model. The 

following are pre-processing methods implemented on the data. 

Create Function-docstring Pairs 

After gathering the dataset our next steps will be to create a function-docstring pair of each 

python file. Firstly, the Python file is compiled using the "trackback" [12] library in Python to 

check if there is any compilation error in the file; if there is an error, then the function or a 

Python file will be excluded from the dataset. After compilation, we need to extract the 

@ Decorator 

 

def addition(x,y): 

 ―this is the function for addition of two numbers‖ 

 ―‖‖ Input arguments: - a,b must be int 

 Return addition of a and b‖‖‖ 

 return a+b 

Decorator Function name 

Docstring 

Function signature 

Function name: - addition(x,y) 

Function description: -this is the function for addition of two numbers 

Function Code: - return a+b 
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function name and docstring from the given Python file. We will be using the AST [13] 

module in Python, which converts the Python code into an abstract syntax tree for analysis. 

So here we are, keen on extracting the function name and its corresponding docstring 

signature. So, with the help of ―trackback‖ [12] and ―nltk RegexpTokenizer" [24], we extract 

both things and tokenize them. One reason behind tokenization is that it removes punctuation 

and decorators and converts the whole text into lowercase. Figure 3 shows the example of the 

function-docstring pair. 

Remove the Duplicate 

All duplicate entries related to the function definition or function token are removed. This 

is done to prevent weights/biases from being added to string pairs in certain function 

documents during training. This is because more entries on specific data can affect your 

training. In this study, we have a relatively small dataset. This feature is included for large 

datasets. 

Remove the Function without Docstring 

In this study, we perform supervised machine learning. Therefore, a well-structured and 

defined dataset is required for more accurate results. As with this study, there are two critical 

things. The Code and the corresponding docstring. However, some functions do not have a 

docstring in the real world, are too short, or are poorly described. Here, some of these cases 

are excluded from the dataset. 

Split the Dataset 

Splitting the dataset is one of the most important in the field of machine learning. In this 

study, we divided data into three things, training dataset, validation dataset, and testing 

dataset. The ratio of the splitting dataset is 80:10:10 for the train:validation:test [14]. 

 

 

Figure 3: Dataframe of the dataset with source code and function-docstring pairs 

 

Figure 4(a): Dataset split into function name, pair, and line of number 
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Figure 4(b): Dataset split into function tokens and docstring tokens 

4. Convert Docstring to Embedding using a Transformer 

After collecting, preprocessing, and splitting the dataset, the next part will help you 

understand one of the presented data docstrings into a vector and gain great insight into the 

data. This search uses the Albert transformer [15] provided by the hugging face [16] library to 

convert the document string to a vector. This section explains why you should choose Albert, 

how to use this dataset to train transformers, and finally how to convert docstring to vector. 

Albert stands for "A Lite Bidirectional Encoder Representation." Albert is one of the 

transformers of a BERT family introduced by Google. Albert is an upgrade from BERT, 

which advances the state-of-the-art performance in 12 over NLP tasks, and some of them are 

Standford Question Answering Dataset. The Albert is implemented on top of TensorFlow, 

combined with a pre-trained Albert model. Choosing Albert over other transformers is 

parameter sharing, smaller word embeddings, and sentence over prediction. Here we will be 

using Albert's pretraining model, which can be found on the TensorFlow hub. The reason 

behind choosing a pre-trained model is that it can save us time and resources for building a 

machine-learning model from scratch. Here for training, our dataset is docstring which is 

nothing but an English representation of how the Albert transformer is trained. 

Albert has an encoder number similar to the BERT transformer, but Albert shares weights 

between encoders and treats Albert as a single encoder with multiple embeddings applied. 

This significantly improves training speed and reduces specific parameters across Albert's 

models. Also, since only one set of weights is stored, the model takes up much less space on 

GPU memory. The parameter-sharing technique also serves as a form of regularization that 

stabilizes training and aids in generalization. The author of Albert suggests several ways to 

share parameters, such as ALBERT's default decision is to share all parameters between 

layers.  

Another advantage of Albert is the small embedding, with only 1/6 of the BERT 

embedding with 128 features. This is one of the reasons why the Albert Transformer has a 

small number of parameters. This will speed up model training, lose weight and help the 

model learn a better display. Another advantage of the transformers, as mentioned above, is 

that they can predict the order of sentences. Albert is trained in a sentence ordering task that 

defines whether the two sentences are coherent, that is, what comes before and after. 

Training of Albert Transformer  

Now that we have a pre-trained Albert Transformer model, we need to tune the model to 

work with a particular dataset. First, the pre-trained model needs to be refined because it is 

trained on many English word datasets. Perform incremental training on a pre-trained Albert 

model using the docstrings collected from the dataset for fine-tuning. Here we need to 

generate and create escaped sentence pairs so that the model uses n-gram escaped language 
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modeling. We could use the same word file author used to train the Albert model. However, 

some docstring programming contexts have different meanings than English words. 

Therefore, we will use the Docstring dataset and the Albert model to create pre-training data 

for Albert's model. This dataset will be further used for incremental training [17] to fine-tune 

the Albert model. After training the entire model, the Docstring is transformed into 768 

dimensions of the vector for further processing. This is how the Docstring is converted to a 

vector. 

5. Function Token to Embedding Vector 

The previous section will convert the Docstring to a 768-dimensional vector. Therefore, 

this section transforms the function token into the same 768-dimensional vector so that both 

the function token and the corresponding document string are in the shared vector space. If 

those values are very similar to the vector generated for the corresponding document string, 

then the function vector in the shared vector space is called. This helps in interpreting the 

code and generating the code vector. Figure 5 shows the architecture of the transformer model 

used for the translation [18]. 

 

 

Figure 5: Transformer model architecture for translation 

We start by generating a vocabulary of docstrings and function codes and converting them 

to IDs. This is also known as the index position of the token in the vocabulary. Use 

BertWordPieceTokenizer. This improves your vocabulary and reduces the breakthroughs of 

common words into subwords. In addition, add start and end tokens to the vocabulary you 

want to model to recognize the start and end of a function or document string. Other features 

such as padding and masking are also used in the vocabulary. If you use padding to create the 

same number of vectors and understand the existence of a transformer model for the padding 

masking method, not all docstrings or function tokens contain the same number of tokens. In 

addition, after this preprocessing, the transformer model is trained at 100 epochs to predict the 

writing of functional code. Figure 6 shows some of the results of predicted and actual 

function translation with the help of a machine learning model. In the first result, we can see 

that model predicted the docstring perfectly while in the second we can see the exact 

opposite. 
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Function Code 
insertion sort elements for in range 1 len elements anchor elements 1 while 0 

and anchor elements elements 1 elements 1 elements 1 anchor 
Predicted docstrig perform an insertion sort for given n elements of array 
Actual Docstring perform an insertion sort for given n elements of array 

 

Function Code 
decrypt cipher list int key list int str plain for in range len key int cipher key 2 

key plain append chr return join for in plain 
Predicted 

Docstring 
function to convert a decimal to binary 

Actual Docstring function to decrypt text using pseudo-random numbers 

Figure 6: Output from the precision of docstring 

After creating a model which can encode function to docstring successfully, we create the 

dataset by encoding the function tokens with the transformer model and generate the 768 

dimensions of the vector for each function token. After this, the function token and the 

docstring will be in the same vector space. Figure 7 shows the architecture of the Transformer 

model used for vectorization. 

 

 

Figure 7: Transformer model architecture for the vectorization 

6. Cosine Similarities 

In this section, we will be going over how we get the result for the inserted query and how 

to find the similarity in the docstring to the corresponding function code. In this section, we 

have chosen cosine similarity over all the other similarity methods because cosine similarity 

can understand the context and give relevant results. 

In data analysis, cosine similarity measures the similarity between two sequences. The 

sequence is considered a vector of inner product space, and the sine similarity is defined as 

the inner product of the angles between them, that is, the inner product of the vectors divided 

by the product of the lengths. Therefore, the cosine similarity does not depend on the 
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magnitude of the vector, only on the vector's angle. Cosine similarity always belongs to the 

interval [1,1]. For example, two proportional vectors have a cosine similarity of 1, two 

orthogonal vectors have 0, and two opposite vectors have a similarity of 1. Cosine similarity 

is primarily used in positive spaces where the result is limited by [0,1] [19]. 

For example, in information retrieval and text mining, each word is assigned different 

coordinates, and the document is represented by a vector that represents the number of times 

each word appears in the document. Second, cosine similarity is a valuable measure of how 

similar two documents are in subjects, regardless of the length of the document. 

Following is the mathematical representation of the cosine similarity. Consider two vectors 

a and b, [20]. 

     
 ⃗    ⃗⃗

‖ ⃗‖  ‖
 
→‖

  

7. Finding the Results 

Nsmlib[21] creates a hierarchical, navigable Small world graph for each function vector 

used for the search. The Small World Graph is a mathematical graph in which the overall 

distance between two randomly selected nodes increases in proportion to the number of nodes 

in the network. To find the node closest to the query point, one can use the Smallworld 

property to navigate the graph quickly and efficiently to find the approximate closest 

node.[22] Use the greedy approach to select any node in the graph randomly, calculate the 

distance of the adjacent node from the query point of the selected node, and find the adjacent 

node closest to the query point. If the adjacent node found is closer to the query point than the 

selected node, move to that node and continue moving in that direction. Follow the same 

process to find the adjacent node for that node. This is the node closest to the dem query 

point. This continues until you reach a node with no nodes adjacent to the query point. This 

node is declared as the neighbor closest to the query point. 

Now, we need to find the relevant result for the inserted query. Albert transformer model, 

which was fine-tuned and trained on the desired dataset, will be used to encode inserted query 

into a 768-dimensional vector. Using the cosine similarity and k-nearest-algorithm, for all the 

feature vectors identical to the search query vector, the top 5 answers will be extracted, and 

by using the index from the dataset, relevant code will be displayed. Figures 8(a) and (b) 

show the top 2 answers for the inserted query "Matrix multiplication." In the results, we can 

observe that the model understands the inserted query's semantics. Both the output shows the 

relevant result for the matrix. However, figure 8(b) shows the Python code for matrix 

multiplication using a list, the desired output for an inserted query. 
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Figure 8(a): First answer for the inserted query 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8(b): Second answer for the inserted query 

8. Conclusion and Future Enhancements 

To conclude, in this research, we propose a new approach for semantic code search by 

using an Albert transformer from hugging face and a seq-seq encoder with a multi-head 

attention mechanism from a pool of Python code. In this research, by creating own dataset 

and custom pre-processing techniques such as a unique dataset founded. i.e., python code 

with compilation error is excluded. Using the Albert model, we converted a text format of a 

docstring to a 768 dimension of the vector. In addition to that, by creating a custom 

transformer model aligned with the seq-seq encoder, we encoded a function code to a 768-

dimension vector so both function and docstring will be in shared vector space. By using 

cosine similarity and the k-nearest-neighbor algorithm, we will be able to extract the top 5 

results for an inserted query. 

However, we are doing supervised learning for a machine learning model by using the 

given data in this research. A situation may arise when there is no relevant code for the 

def inverse(matrix: list[list]) ->(list[list] | None): 

    """ 

    Inverse of a matrix a with n Dimension 

    """ 

    det = determinant(matrix) 

    if det == 0: 

        return None 

    matrix_minor = [[determinant(minor(matrix, i, j)) for j in range(len( 

        matrix))] for i in range(len(matrix))] 

    cofactors = [[(x * (-1) ** (row + col)) for col, x in enumerate( 

        matrix_minor[row])] for row in range(len(matrix))] 

    adjugate = list(transpose(cofactors)) 

    return scalar_multip(adjugate, 1 / det) 

cosine dist:0.0856  

 def multiply(matrix_a: list[list], matrix_b: list[list]) ->list[list]: 

    """ 

    Regular matrix multiplication using list 

    """ 

    if _check_not_integer(matrix_a) and _check_not_integer(matrix_b): 

        rows, cols = _verify_matrix_sizes(matrix_a, matrix_b) 

    if cols[0] != rows[1]: 

        raise ValueError( 

            f'Cannot multiply matrix' 

            ) 

    return [[sum(m * n for m, n in zip(i, j)) for j in zip(*matrix_b)] for 

        i in matrix_a] 
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corresponding inserted query. So, to improve this research, firstly, we can collect more data; 

secondly, we can create an automatic code generation aligned with this research, which can 

create a relevant code for the query even though the corresponding code is not available in the 

dataset. In addition to that, in this research, we only focused on Python language code; 

however, in further research work, we can focus more on the multi-programming language 

code search by using the latest transformer. 
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