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Abstract: Short-Term Load Forecasting (STLF) plays a fundamental role in modern energy 

management systems by enabling efficient power generation, distribution, and consumption 

planning. Accurate predictions mitigate electricity wastage, reduce operational costs, and 

prevent system failures, particularly during peak demand. This study proposes a novel one-

day-ahead STLF approach using Artificial Neural Networks (ANNs), incorporating 

temperature-sensitive variables to enhance forecasting precision. The research identifies and 

addresses weather factors' significant impact on hourly load patterns, especially temperature. 

The model uses historical hourly load and weather data to predict load demand. Key input 

features include hourly load values from two previous days and one week before the forecast 

day, combined with detailed temperature data. Load sensitivity analysis is conducted to 

categorize demand into concentrated and scattered periods, enabling dynamic adjustment of 

temperature weights during peak and off-peak hours. The methodology is tested using 

historical load data from Connecticut, USA, for the summer and winter seasons of 2010-2012. 

Experimental results demonstrate the efficacy of the proposed model, achieving a Mean 

Absolute Percentage Error (MAPE) of 2.20% in summer and 2.40% in winter. The use of 

temperature-sensitive weights significantly improves accuracy compared to traditional ANN 

models. These findings underscore the importance of weather-sensitive inputs in STLF and 

provide a robust framework for optimizing load forecasting models. The research has critical 

implications for energy providers, aiding in developing reliable, cost-effective, and 

environmentally sustainable power systems. Future work could further explore integrating 

additional meteorological variables, alternative machine learning techniques, and diverse 

geographic datasets to enhance forecasting accuracy. 

 

Keywords: Short-term load forecasting, Artificial neural networks, Power systems, Time 

series forecasting, Energy forecasting 

1. Introduction 

In modern energy systems, the efficient generation, distribution, and utilization of 

electricity are central to economic development and environmental sustainability. As the 

global energy demand continues to grow, power providers face increasing pressure to ensure 

the stability and reliability of electrical grids while minimizing waste and reducing 

operational costs. Short-Term Load Forecasting (STLF) is a critical component of this effort, 
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enabling utilities to predict electricity demand accurately. Accurate load forecasting allows 

power providers to adjust supply mechanisms in real-time, reducing the risk of outages, 

improving grid stability, and enhancing resource allocation. In particular, STLF contributes to 

energy efficiency by minimizing energy wastage and optimizing the operation of power 

plants. However, achieving high precision in STLF remains a significant challenge due to the 

dynamic and multifaceted nature of electricity demand, which is influenced by various factors 

such as consumer behaviour, industrial activity, and weather conditions. A key challenge in 

this area is accounting for weather-related variables, particularly temperature, which 

profoundly impact electricity demand patterns, especially during peak demand periods [1][2]. 

Research has consistently shown a strong correlation between temperature fluctuations and 

power consumption, with temperature spikes often triggering increased demand for cooling in 

summer or heating in winter. Previous studies have emphasized the importance of including 

temperature as a dynamic variable in STLF models, particularly in regions where climate is 

dominant in shaping energy consumption patterns [3]. Despite advancements in 

computational models, many traditional STLF approaches still struggle to dynamically 

incorporate weather factors, leading to reduced forecasting accuracy, particularly during 

periods of extreme temperature. These limitations necessitate the development of innovative 

methodologies that can better model the complex relationship between weather conditions 

and electricity demand. Artificial Neural Networks (ANNs), which can handle large and 

complex datasets, have emerged as a promising tool to address this challenge. By training 

ANNs to account for nonlinear relationships between temperature and load demand, 

researchers have significantly improved the accuracy of load forecasting models [4][5]. 

This study investigates a one-day-ahead STLF model based on ANNs, focusing on 

incorporating temperature-sensitive variables to enhance forecasting accuracy. The proposed 

model dynamically adjusts temperature weights based on the time of day and the anticipated 

demand patterns, providing more accurate predictions for concentrated and scattered demand 

periods. This research uses historical hourly load and temperature data to identify key patterns 

that optimize forecast precision across different seasons, thereby improving the ability to 

predict demand peaks and troughs more accurately. This dynamic approach addresses the 

limitations of traditional models, which often fail to adjust for the fluctuating nature of 

temperature and its influence on electricity demand. 

The importance of accurate STLF extends far beyond operational efficiency. It plays a vital 

role in sustainable energy management, particularly in regions experiencing rapid 

urbanization and significant climate variability. As the integration of renewable energy 

sources, such as solar and wind, becomes more widespread, accurate load forecasting is 

essential for balancing supply and demand and ensuring the grid's stability. Reliable load 

forecasting is also crucial for equitable power distribution, helping to avoid power shortages 

or excess generation, which can be costly and environmentally damaging. Furthermore, 

accurate forecasting can help utilities manage the integration of renewable energy sources by 

predicting periods of high demand when renewables may not be sufficient, thereby enabling 

better decision-making in grid management. Recent studies underscore the value of ANN-

based forecasting in improving the reliability and adaptability of energy systems, particularly 

in regions like South Africa, which face challenges related to energy demand and climate 

variability [6]. 

This research contributes to advancing the state of the art in STLF by addressing two key 

objectives: first, to develop an ANN-based STLF model that incorporates temperature-

sensitive variables, and second, to evaluate its performance against traditional forecasting 

approaches using real-world data. By integrating temperature fluctuations dynamically into 
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the forecasting process, this study offers valuable insights that can help energy providers, 

policymakers, and researchers improve the precision and adaptability of STLF models. These 

findings promise to enhance energy systems worldwide, particularly in regions with diverse 

weather patterns and growing energy demands, and contribute to achieving sustainable, 

efficient, and resilient energy management. 

2. Literature Review 

2.1. The role of weather variables in short-term load forecasting 

Weather variables, particularly temperature, have long been recognized as critical 

determinants of electricity demand, especially in urban and densely populated regions. Lee et 

al. [7] found that load demand during peak hours is susceptible to temperature fluctuations, 

with sharp increases observed during extreme weather conditions, such as heat waves or cold 

snaps. This correlation is particularly pronounced in regions where Heating, Ventilation, And 

Air Conditioning (HVAC) systems dominate electricity consumption. However, while 

temperature is the most studied factor, other variables like humidity, wind speed, and solar 

radiation influence demand. Jiang et al. [8] demonstrated that combining temperature with 

secondary weather factors enhances the robustness of load forecasting models, particularly in 

regions with diverse climatic conditions. 

Raza and Khosravi [9] reviewed STLF methodologies comprehensively, highlighting the 

importance of integrating weather variables into predictive models. They emphasized that 

failing to account for these factors can result in significant forecasting errors, especially 

during seasonal transitions. Building on this foundation, Sun et al. [10] introduced a novel 

approach that segments load demand into time-based categories, allowing for more precise 

modeling of temperature-sensitive periods. This method aligns with the present study's focus 

on categorizing load sensitivity by time of day, offering a promising avenue for improving 

forecasting accuracy. 

Despite these advances, significant gaps remain in the literature. Existing models often 

oversimplify the dynamic interactions between weather variables and load demand, 

particularly in regions with rapidly changing climates or urbanization patterns. For instance, 

Kim et al. [11] noted that smaller utilities often lack the resources to implement complex 

weather-based models, leading to suboptimal predictions. Furthermore, while the impact of 

temperature is well-documented, limited attention has been given to exploring the effects of 

combined weather variables on load patterns, highlighting an area for further research. 

2.2. Machine learning techniques in load forecasting 

Applying Machine Learning (ML) techniques, particularly Artificial Neural Networks 

(ANNs), has transformed the field of short-term load forecasting. ANNs excel in capturing 

nonlinear relationships and processing large datasets, making them ideal for modeling the 

complex interactions between historical load data and influencing factors like weather and 

consumer behavior. Zhang et al. [19] introduced a hybrid ANN model that integrates feature 

selection algorithms, achieving significant improvements in accuracy compared to traditional 

statistical approaches. Their findings demonstrate that careful selection of input variables, 

such as temperature and historical load patterns, is crucial for optimizing ANN performance. 

Further advancing the field, Cheng and Wang [12] applied Long Short-Term Memory 

(LSTM) networks to model temporal dependencies in load data. Their results showed that 
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LSTM models outperformed conventional ANNs in multi-day forecasts by effectively 

capturing the sequential nature of electricity demand. However, they noted that LSTMs 

require substantial computational resources and large datasets for training, which may limit 

their accessibility for smaller utilities or regions with limited data availability. 

Explainability in machine learning models is another emerging area of interest. Tang et al. 

[13] argued that while ANN and other ML models often provide superior accuracy, their 

"black box" nature poses challenges for interpretability and stakeholder trust. They proposed 

integrating Explainable AI (XAI) techniques into load forecasting models to enhance 

transparency and facilitate decision-making processes. This aligns with the need for accurate 

and interpretable models, particularly in high-stakes energy management scenarios. 

Despite these advancements, the literature reveals several limitations. Ayoobi et al., [14] 

highlighted the lack of regional customization in many ML models, noting that models 

trained on one dataset often fail to generalize to other regions with different climatic or 

socioeconomic conditions. Banerjee and Gupta [15] also emphasized the need for integrating 

temporal segmentation into ML frameworks to account for variations in load sensitivity 

across different times of the day and year. Addressing these gaps is essential for developing 

scalable and adaptable models, ensuring their applicability across diverse energy systems. 

The current study builds on these findings by integrating time-sensitive temperature 

variables into an ANN-based STLF model. By dynamically adjusting temperature weights 

during concentrated and scattered demand periods, this approach seeks to address the 

limitations of existing methodologies and improve forecasting accuracy in real-world 

scenarios. 

2.3. Hybrid models in short-term load forecasting 

The growing complexity of electricity grids has prompted the adoption of hybrid models 

that merge multiple predictive methodologies to enhance short-term load forecasting (STLF). 

These models integrate statistical techniques with machine learning algorithms, leveraging 

their respective strengths while addressing individual limitations. 

Recent research in the United States has highlighted the success of hybrid frameworks that 

combine machine learning with time-series decomposition methods. For example, 

Rajagopalan and Wang [16] employed a combination of Long Short-Term Memory (LSTM) 

networks and Autoregressive Integrated Moving Average (ARIMA) models. This approach 

improved accuracy by capturing temporal dependencies and seasonal trends in load data, 

particularly in regions with fluctuating weather patterns. 

Similarly, in Australia, hybrid models integrating Support Vector Machines (SVMs) and 

Genetic Algorithms have been deployed to optimize parameter selection and forecasting 

precision. A study by O’Brien et al. [17] demonstrated that incorporating weather variables 

such as temperature and humidity into hybrid models significantly reduced forecasting errors, 

particularly in summer when demand variability is highest. 

In the UK, Solyali et al. [18] explored hybrid methodologies combining wavelet transforms 

with neural networks, achieving notable success in urban grids with high renewable energy 

penetration. This model excelled in isolating high-frequency variations in load demand, 

making it especially suitable for innovative grid applications. 

While these hybrid models present substantial advancements, challenges such as 

computational resource requirements and adaptability to diverse network configurations 

remain. Future research could focus on scalable implementations and regional customization 

to enhance the practical applicability of hybrid models across varying grid conditions. 
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3. Research Purpose and Design 

This study addresses the critical question: How can integrating dynamic temperature 

weights improve the accuracy of one-day-ahead Short-Term Load Forecasting (STLF) models 

using Artificial Neural Networks (ANNs)? Short-term load forecasting plays a crucial role in 

electricity grid management, as accurate predictions of demand allow for efficient resource 

allocation, cost minimization, and stability in power systems [21][22]. While numerous 

forecasting models exist, integrating dynamic factors such as temperature sensitivity has 

improved their precision, particularly during periods of high demand, such as extreme 

weather events. This research investigates how dynamic temperature weighting in ANN-

based models can enhance forecasting accuracy, focusing specifically on one-day-ahead 

predictions, which are vital for operational planning in energy systems. 

A quantitative research design was adopted to explore this, utilizing a time-series 

forecasting approach to predict hourly electricity demand. Time-series forecasting allows for 

the effective modeling of sequential data, capturing trends and seasonal patterns in electricity 

consumption. This study's design incorporates historical load data alongside weather 

variables, particularly temperature, as a dynamic factor influencing load patterns. Previous 

research by Zhang et al. [20] underscores the importance of effective feature selection and 

preprocessing techniques in improving forecasting performance. This study extends their 

work by integrating dynamic temperature weights, which are expected to capture better the 

nuanced relationship between temperature fluctuations and electricity demand. 

3.1. Data collection and analysis 

The dataset for this study consists of hourly electricity load and weather data for the state 

of Connecticut from 2010 to 2012, sourced from publicly available energy consumption 

records and meteorological data. The data was selected to represent a variety of seasonal 

patterns, with a particular focus on the summer (July) and winter (January) months, as these 

periods experience the greatest fluctuations in temperature and, consequently, electricity 

demand. Summer months often witness higher electricity usage due to air conditioning needs, 

while winter months see increased demand due to heating requirements. The study aims to 

capture the full spectrum of temperature sensitivity by focusing on these two seasons. 

Purposive sampling was employed to isolate data from these high-demand months, 

ensuring that the model would be tested under conditions where temperature has the most 

significant impact on load variation. Before the data could be analyzed, it was preprocessed to 

normalize values and address missing points. Preprocessing is a critical step in machine 

learning workflows as it ensures that the model is trained on high-quality data, avoiding 

potential biases and inaccuracies. In addition, feature selection was done to identify the most 

relevant predictors of electricity demand. The primary input variables for the ANN model 

included historical load data from two days prior and one week before the target day. The 

rationale behind including these time-lagged features is that electricity consumption on a 

given day is often influenced by consumption patterns in the preceding days, especially 

during periods of steady demand. 

Weather variables such as temperature, humidity, and dew point were also included in the 

model. Temperature, however, was treated as a dynamic variable, with its influence on 

demand adjusted according to different periods of the day, precisely peak and off-peak hours. 

The dynamic weighting of temperature sensitivity allows the model to account for the fact 

that temperature impacts demand differently during the day—higher temperatures during 
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peak demand periods (e.g., late afternoon or evening) might cause a larger increase in 

electricity consumption, while the same temperature at night may not have the same effect. 

An ANN model was constructed using TensorFlow, a popular machine learning 

framework, and trained using backpropagation. Backpropagation allows the model to learn 

from the errors in its predictions, iteratively adjusting its internal weights to minimize 

forecasting inaccuracies. The dataset was divided into training (70%), validation (15%), and 

testing (15%) sets to ensure that the model was robust and capable of generalizing to unseen 

data. The dynamic temperature weights were integrated into the model through a weighting 

mechanism that adjusted the influence of temperature on the forecast during different times of 

the day. This method is consistent with Sun et al. [10], who demonstrated that time-sensitive 

adjustments to model inputs can enhance the accuracy of load forecasts. 

The Mean Absolute Percentage Error (MAPE) metric was used to evaluate the model's 

performance. MAPE provides a transparent and interpretable measure of forecasting accuracy 

by calculating the average percentage difference between predicted and actual values. This 

metric was chosen because of its ability to capture both the magnitude and direction of 

prediction errors, offering a comprehensive assessment of model performance. 

3.2 Ethical considerations and limitations 

The research adhered to ethical standards by using publicly available data, ensuring no 

private or confidential information was involved. All data sources were appropriately cited, 

and the methodologies were transparently described to facilitate reproducibility. By relying 

on publicly available datasets, the study ensured that the research complied with ethical data 

privacy and participant consent guidelines. 

However, several limitations should be acknowledged. First, the scope of the study is 

geographically limited to the state of Connecticut, which may restrict the generalizability of 

the findings to other regions with different climatic, economic, and consumption patterns. 

Although Connecticut's data provides valuable insights into the impact of temperature on load 

forecasting, the findings may not fully apply to areas with drastically different weather 

conditions, such as regions with mild climates or those that experience frequent extreme 

weather events. 

Additionally, the computational complexity of the ANN model may pose a challenge for 

smaller utilities with limited computational resources. Training and deploying an ANN model 

require significant processing power, which could make it difficult for smaller power 

companies to adopt this approach without substantial investment in infrastructure. 

Furthermore, while temperature was dynamically weighted in this study, other weather 

variables, such as wind speed and solar radiation, were excluded from the model. These 

variables can influence electricity demand, particularly in areas where renewable energy 

sources, like wind or solar power, play a significant role. Future research could consider 

integrating these additional weather variables to provide a more comprehensive model of 

electricity demand forecasting. 

Finally, future studies could expand the geographic scope of this research, integrating data 

from different regions to assess the robustness of the dynamic temperature weighting 

approach across varying climatic conditions. Additional variables, such as wind speed, solar 

radiation, and even economic indicators, could be incorporated to refine the forecasting model 

further. Moreover, to address the computational challenges associated with ANN models, 

future research might explore more accessible and efficient machine learning techniques or 

hybrid models that combine ANNs with other statistical methods to balance accuracy and 
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computational efficiency. This approach aligns with the framework proposed by Cheng and 

Wang (2021), which advocates for the integration of multiple forecasting methods to enhance 

model performance. 

4. Load Pattern Analysis of the Particular Time Zone 

Understanding load patterns within specific time zones is critical for accuracy in short-term 

load forecasting (STLF). Electricity consumption is intricately linked to human activity 

patterns, which fluctuate, based on the time of day, day of the week, and season. The 

relationship between energy demand and human behavior is significant for forecasting 

because it can provide valuable insights into when and why electricity usage peaks. Different 

residential, commercial, and industrial sectors experience varying demand profiles, and these 

differences must be captured in forecasting models to ensure their accuracy. 

Load demand generally follows predictable trends, with specific periods characterized by 

high consumption, such as working hours, and others with lower usage, typically during off-

peak hours. During weekdays, for example, electricity consumption in commercial buildings 

and manufacturing facilities peaks during the morning and afternoon as businesses operate at 

full capacity. In contrast, during off-peak periods—such as late at night and early morning—

demand tends to be scattered, influenced more by residential consumption. In addition to 

these daily cycles, seasonal variations—particularly temperature changes—further influence 

the demand profile, making it essential to consider temperature sensitivity when forecasting 

short-term load. 

This study analyzes load demand by identifying and characterizing the periods when 

temperature-sensitive variables significantly affect forecasting accuracy. Load demand is 

especially sensitive to temperature during certain time zones as heating and cooling 

requirements become more pronounced. By examining these time zones, we aim to identify 

key periods where temperature plays a crucial role, enhancing the precision of the forecasting 

model. 

4.1. Seasonal and diurnal load patterns 

Figures 1 and 2 illustrate the relationship between electricity load and temperature, 

highlighting the unique load patterns observed in summer and winter. In summer (as shown in 

Figure 1), demand peaks between 10:00 a.m. and 10:00 p.m., with the highest consumption 

observed during the late afternoon and evening. This period aligns with residential, 

commercial, and industrial cooling requirements as air conditioning usage increases with 

rising temperatures. Summer electricity consumption is typically driven by the need to 

maintain comfortable indoor temperatures, and this demand is susceptible to fluctuations in 

outdoor temperatures. The relationship between temperature and demand is particularly 

pronounced during the afternoon and early evening, when temperatures are at their highest 

and cooling systems are most heavily utilized. 

Conversely, winter demand that is depicted in Figure 2 shows a different pattern. During 

colder months, two primary demand peaks emerge. The first occurs from 7:00 a.m. to 11:00 

a.m., while the second peak appears from 5:00 p.m. to 10:00 p.m. These peaks reflect the 

increased need for heating in residential and commercial buildings. Unlike summer, where 

demand is spread throughout the day, winter demand is more concentrated in the early 

morning and evening hours, corresponding to periods when households and businesses are 

starting their day or returning home, requiring heating systems to be activated. This distinct 
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load pattern is critical for understanding how temperature influences demand and how it can 

be integrated into forecasting models. 

4.2 Sensitivity to temperature changes 

The analysis reveals that load demand is susceptible to temperature variations during these 

concentrated periods. Temperature fluctuations during peak demand hours significantly affect 

electricity consumption in both summer and winter. During summer, for example, a slight 

increase in temperature between 10:00 a.m. and 5:00 p.m. can lead to a sharp rise in 

electricity usage as air conditioning systems work harder to maintain indoor comfort. In 

winter, even a slight dip in temperature during the early morning and evening hours can 

trigger increased heating demand, further elevating load demand. 

This temperature sensitivity highlights the importance of incorporating temperature-

sensitive variables into STLF models. By dynamically adjusting temperature weights during 

these critical time zones, we can more accurately predict how demand will respond to 

temperature changes, improving forecasting precision. 

4.3 Time-segmented modeling and load forecasting 

Figures 1 and 2 also demonstrate the relationship between load demand and the maximum 

load capacity. In summer, the electricity demand peaks between 80% and 100% of the 

maximum load capacity, with the most pronounced peaks aligning with standard working 

hours. When demand is at its highest, these time zones are crucial for model optimization. By 

dynamically weighting temperature sensitivity during these periods, the ANN model can 

more accurately reflect the real-time impact of temperature fluctuations on load demand. This 

strategy of time-segmented modeling has been validated in previous research by Sun et al. 

[10], who found that adjusting model parameters based on specific periods enhances the 

overall accuracy of load forecasts. 

Identifying and categorizing these temperature-sensitive periods provides a deeper 

understanding of load dynamics and offers a framework for improving the accuracy of 

forecasting models. Temperature-sensitive time zones—particularly during peak demand 

periods—are where accurate load forecasting is essential, as energy providers must ensure 

sufficient capacity to meet demand without overloading the grid. By focusing on these critical 

periods, we can fine-tune the forecasting model to provide more reliable predictions, which is 

crucial for grid operators in planning their energy resources. 
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Figure 1: Relationship between the load demand and temperature in 24 hours 
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Figure 2. Relationship between electric load demand and peak rate 

5. Research Results and Discussion 

The results of this study provide compelling evidence of the effectiveness of integrating 

dynamic temperature-sensitive variables into Short-Term Load Forecasting (STLF) models 

using Artificial Neural Networks (ANNs). The model was tested on hourly electricity load 

and weather data collected from Connecticut during both summer (July) and winter (January). 

By dynamically adjusting temperature weights during periods of concentrated and scattered 

demand, the proposed model demonstrated substantial improvements in forecasting accuracy 

over traditional methods. These findings underscore the significant impact of temperature 

sensitivity on load prediction, particularly during seasonal peak periods when demand is most 

volatile. 

The following are the primary findings of this study, including the reduction in forecasting 

error, the impact of temperature weighting on model performance, the visual representation of 

results, and the statistical validation of the outcomes. 

(1) Reduction in Forecasting Error. 

One of the most significant improvements observed in this study was the reduction in 

forecasting error, measured by the Mean Absolute Percentage Error (MAPE). Including 

dynamic temperature weighting substantially enhanced the accuracy of the load forecasting 

model. In the summer months, the average MAPE decreased from 6.08% to 2.20%, reflecting 

a remarkable 63.8% improvement in forecasting accuracy. In winter, the average MAPE was 

reduced from 7.23% to 2.40%, representing a 68.4% improvement. These results highlight the 

substantial impact of incorporating temperature-sensitive variables on improving model 

precision. 

Table 1 presents a detailed comparison of MAPE values for models with and without 

including temperature-sensitive variables across multiple test days. The table clearly 

illustrates the enhanced performance of the model when dynamic temperature weighting is 

applied, with reductions in error across both summer and winter periods. This reduction in 

error is critical, as it reflects a model that more accurately predicts electricity demand, 

particularly in environments where temperature fluctuations are the primary drivers of 

demand variability. 
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Table 1: MAPE comparisons for models with and without temperature weighting 

 Summer winter Improvement(%) 

Days Excluding Including Excluding Including Summer Winter 

1 7.473 2.9685 6.8332 2.9886 60.277 56.264 

2 2.1268 1.4357 8.5676 3.7871 32.495 55.797 

3 6.6934 2.1509 3.0828 2.5419 67.865 17.546 

4 7.4116 2.4693 2.7648 1.8341 66.683 33.662 

5 4.805 2.0282 8.8155 1.9558 57.79 77.814 

6 3.7997 2.4915 9.8318 1.6441 34.429 83.278 

7 10.2873 1.8734 13.3061 2.0386 81.789 84.679 

Average 6.085 2.203 7.235 2.399 63.796 68.434 

(2) Impact of Temperature Weighting 

The results further indicate that temperature-sensitive variables have a more pronounced 

effect during summer compared to winter. During the summer, electricity demand is heavily 

influenced by the need for cooling, mainly through air conditioning, making temperature 

changes more impactful. As temperatures rise, residential, commercial, and industrial cooling 

systems work harder to maintain indoor comfort, leading to a sharp increase in electricity 

consumption. This heightened sensitivity to temperature fluctuations during the summer 

months means incorporating dynamic temperature weighting, which provides a significant 

advantage in forecasting accuracy. 

In contrast, the winter months show a more dispersed demand pattern, primarily driven by 

heating requirements. While temperature still plays a role in determining demand, the overall 

influence of temperature on electricity consumption is less pronounced in winter than in 

summer. This difference can be attributed to heating required during daytime and evening 

hours, leading to more uniform demand distribution throughout the day. Nonetheless, even in 

winter, dynamic temperature weighting still improves the model's accuracy by adjusting for 

variations in demand during the colder hours of the day. 

(3)Visual Representation of Results 

Figures 1 and 2 offer graphical representations of the study's findings to understand the 

model's performance better. Figure 1 compares the forecasting performance of the ANN 

model, showing the reduction in MAPE with the inclusion of temperature-sensitive variables. 

This visual comparison highlights the improvements in forecasting accuracy across both 

seasons. Figure 2 presents a more detailed illustration, showing the actual versus predicted 

load patterns for a representative day in both summer and winter. The alignment of predicted 

and actual values in the figures demonstrates the effectiveness of the dynamic temperature 

weighting approach in capturing the nuanced relationship between temperature and electricity 

demand [23][24]. 

The results reveal that the ANN model with dynamic temperature weighting produces 

forecasts that more closely mirror actual load patterns, especially during critical periods of 

high demand. This close alignment is particularly evident in summer, where temperature 

fluctuations significantly influence peak demand periods. 
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Figure 1: Comparison of MAPE for summer and winter 

 

Figure 2: Actual vs. predicted load for a representative day 

(4) Statistical Analysis 

To validate the robustness and significance of the findings, a paired t-test was performed to 

assess the reduction in MAPE between the models with and without dynamic temperature 

weighting. The results indicated that the decrease in forecasting error was statistically 

significant in both summer (p < 0.01) and winter (p < 0.05). These p-values suggest that the 

improvements observed in the MAPE scores were not due to random chance but rather the 

result of the model's ability to account for temperature variations effectively. 

Effect size calculations, using Cohen's d, revealed a large effect size in the summer (d = 

1.45) and a medium effect size in the winter (d = 0.72). These effect sizes further confirm the 

practical significance of the improvements observed in summer, where temperature 

sensitivity has a more profound impact on load demand. While smaller, the medium effect 
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size in winter still indicates a meaningful improvement in the model's ability to capture 

temperature-related load variations. 

The statistical results reinforce the claim that incorporating dynamic temperature weights 

into STLF models significantly improves forecasting accuracy. These findings prove that 

temperature sensitivity is critical in short-term load forecasting, especially during seasonal 

peaks. 

6. Conclusion 

This study aimed to enhance the accuracy of Short-Term Load Forecasting (STLF) by 

incorporating dynamic temperature-sensitive variables into Artificial Neural Network (ANN) 

models, addressing a significant challenge in energy forecasting. By dynamically adjusting 

temperature weights based on periods of concentrated and scattered demand, the study 

successfully improved forecasting accuracy, achieving a notable reduction in the Mean 

Absolute Percentage Error (MAPE). Specifically, the MAPE dropped to 2.20% in summer 

and 2.40% in winter, compared to higher errors in traditional models without temperature 

sensitivity, demonstrating a substantial improvement in forecasting precision. These findings 

emphasize the critical role of temperature, particularly during peak periods influenced by 

cooling in summer and heating in winter, and highlight the importance of incorporating 

dynamic weather variables in STLF models to capture these temperature-sensitive patterns 

accurately. The research shows that including temperature adjustments in forecasting models 

can enhance resource allocation, improve grid reliability, and ensure more efficient energy 

management, all vital for managing the growing electricity demand. However, the study is 

limited by its focus on Connecticut, which may not fully represent other regions with 

different climatic conditions and energy consumption patterns. This geographic limitation 

suggests the need for future studies to broaden the analysis to include a broader range of 

areas, testing the model's generalizability across various climates and consumption behaviors. 

Furthermore, while the study primarily focused on temperature, it did not consider other 

weather factors such as wind speed, solar radiation, or humidity, which could also influence 

load demand, particularly in regions with a high reliance on renewable energy sources. 

Expanding the model to include these additional variables would likely refine the forecasting 

accuracy, especially in areas where renewables play a significant role in the energy mix. 

Another challenge lies in the computational demands of ANN models, which may limit their 

applicability for smaller utilities or regions with fewer resources. Future research could 

explore alternative machine learning techniques or hybrid models that combine ANN with 

other statistical methods to balance forecasting accuracy with computational efficiency. 

Advanced machine learning approaches, such as Long Short-Term Memory (LSTM) 

networks or ensemble methods, could further enhance the model's ability to capture long-term 

dependencies and nonlinear relationships in time-series data, thus improving overall 

forecasting performance. 

Additionally, integrating explainable AI techniques could increase transparency in 

decision-making processes, helping energy providers understand the key factors driving load 

demand predictions. The implications of this study are significant for energy management, 

particularly as the global energy landscape increasingly shifts toward renewable energy 

sources. Accurate short-term load forecasting is crucial for optimizing the integration of 

renewable energy into the grid, minimizing waste, and ensuring the reliability of energy 

supply. By improving forecasting accuracy, this research provides a valuable tool for energy 

providers to manage electricity demand better, reduce the risk of power outages, and enhance 
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grid stability. As utilities move toward a more sustainable future, this study offers a robust 

framework for improving forecasting methodologies and supports transitioning to a low-

carbon, renewable-based energy system. The findings encourage further innovation and 

collaboration in energy management, as they contribute to a more reliable, efficient, and 

sustainable energy infrastructure that can better meet future demands. 
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