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Abstract: Decentralized sensor networks hold the potential to revolutionize distributed 

decision-making by enabling autonomous and cooperative behaviors among sensor agents. 

However, achieving robust consensus in such networks is inherently challenging due to the 

absence of centralized control, dynamic local interactions, and limited communication 

resources. This study introduces a novel Particle Swarm Optimization (PSO)-based 

framework specifically designed to enhance consensus achievement in decentralized sensor 

systems. The framework integrates local information fusion with neighbor-to-neighbor 

communication, effectively reducing communication bottlenecks and enabling efficient 

decision-making in highly distributed environments. The proposed Consensus Achievement 

of Decentralized Sensors (CADS) mechanism incorporates two foundational principles: the 

alignment of nearest-neighbor velocities to promote cooperation and stochastic variability to 

avoid premature convergence. This iterative approach facilitates the resolution of conflicting 

opinions among sensor agents, enabling convergence on globally optimal solutions even in 

complex network conditions. Extensive simulations were conducted on networks comprising 

46 nodes and 347 links, with experimental setups featuring 1000 randomized trials. The 

results demonstrate that the PSO-based CADS mechanism achieves consensus in 87.2% of 

trials, a marked improvement over the traditional majority rule method, which succeeded in 

only 74.8%. This 16.5% improvement highlights the robustness, scalability, and practical 

applicability of the PSO framework. These findings underscore the suitability of PSO for 

decentralized environments, particularly in applications requiring real-time consensus without 

centralized coordination. Future research may focus on adapting the framework for larger-

scale networks, dynamic conditions, and real-world use cases such as autonomous vehicles, 

smart cities, and industrial IoT systems. 
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1. Introduction 

In the digital transformation, decentralized sensor networks have become indispensable for 

real-time data collection, processing, and decision-making across diverse applications. These 

networks are integral to smart grids, environmental monitoring systems, and autonomous 

vehicles, facilitating distributed sensing and control without reliance on centralized 

management. Unlike traditional centralized systems, decentralized networks can scale 

efficiently, adapt to dynamic environments, and remain operational even when individual 

nodes fail. However, the absence of a central coordinator presents a fundamental challenge: 

achieving reliable and efficient consensus among nodes with differing and sometimes 

conflicting information inputs [1]. 

The process of consensus, where nodes within a network reach an agreement on a specific 

value or state, is pivotal for ensuring the network's functionality and reliability. Applications 

such as cooperative control in multi-agent systems, coordinated decision-making in smart 

infrastructure, and seamless operation of autonomous systems depend on robust consensus 

mechanisms [2]. Traditional algorithms, such as the majority rule or average consensus, are 

often limited by their susceptibility to delays, high computational costs, and the risk of 

convergence to suboptimal solutions, especially in heterogeneous and dynamic environments 

[3]. 

Inspired by the collective behaviour of biological systems like bird flocks or fish schools, 

swarm intelligence offers a promising alternative. Among the various swarm intelligence 

techniques, Particle Swarm Optimization (PSO) has emerged as a powerful tool for solving 

optimization problems in distributed and dynamic systems. PSO leverages simple agents or 

particles that iteratively explore the solution space by adjusting their positions and velocities 

based on cognitive and social factors. This adaptability and efficiency make PSO particularly 

suitable for addressing the challenges of consensus in decentralized sensor networks, where 

global coordination is not feasible [4]. 

This study proposes a novel PSO-based framework to achieve consensus in decentralized 

sensor networks. Unlike traditional approaches, the proposed framework emphasizes local 

information fusion and cooperative interactions among sensor nodes to facilitate efficient and 

robust consensus. The key contributions of this research are as follows: 

Development of a PSO-based consensus algorithm: The algorithm handles dynamic and 

heterogeneous conditions typical of decentralized networks by incorporating randomness and 

cognitive-social dynamics to prevent premature convergence. 

Performance evaluation through simulations: The study compares the proposed method's 

efficiency and robustness against traditional consensus algorithms using various network 

topologies and scenarios. 

Analysis of scalability and adaptability: The framework's behavior is tested in networks of 

varying sizes, densities, and environmental conditions, highlighting its potential for real-

world applications. 

Recent studies further highlight the growing importance of advanced optimization 

techniques in addressing the limitations of traditional consensus algorithms. For example, 

adaptive consensus strategies incorporating machine learning have been shown to improve 

the robustness and efficiency of decentralized systems [5]. Similarly, hybrid approaches that 

integrate swarm intelligence with other optimization techniques have demonstrated promising 

results in achieving consensus under challenging conditions [3]. 

By addressing these critical challenges, this study aims to contribute to developing next-

generation decentralized sensor systems that are resilient, efficient, and scalable. The 
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implications of this research extend beyond sensor networks to other domains, such as 

cooperative robotics, intelligent transportation systems, and distributed control in industrial 

automation. 

2. Literature Review 

Decentralized sensor networks are vital in modern technological advancements, 

particularly in applications such as environmental monitoring, autonomous systems, and 

smart grids. However, achieving efficient consensus in such networks remains a challenging 

problem due to their decentralized nature and dynamic conditions. This literature review 

explores two key themes: consensus mechanisms in decentralized sensor networks and the 

role of Particle Swarm Optimization (PSO) in addressing these challenges. It highlights recent 

advancements, identifies research gaps, and establishes the relevance of existing studies to the 

present research. 

2.1. Consensus mechanisms in decentralized sensor networks 

Consensus algorithms are fundamental to achieving coordinated operations in 

decentralized networks. These algorithms enable nodes to agree on a shared state or value, 

which is critical for ensuring network functionality and reliability. Traditional approaches, 

such as the average consensus and majority rule methods, have been extensively studied. 

Olfati-Saber and Murray [6] introduced foundational models that address network consensus 

with switching topology and time delays. However, these methods often face scalability, 

energy efficiency, and adaptability limitations in dynamic and heterogeneous environments. 

Advanced algorithms, such as the Brooks–Iyengar model, have been proposed [20] to 

address these challenges. This algorithm enhances fault tolerance and accuracy in sensor 

fusion applications, making it particularly suitable for networks with faulty or unreliable 

nodes [7]. Despite these advancements, traditional consensus mechanisms frequently struggle 

with large-scale networks, high communication delays, and energy constraints, necessitating 

exploring alternative solutions. 

Recent studies have also investigated adaptive consensus mechanisms for heterogeneous 

conditions and dynamic topologies. Wu and Mehta [8] proposed decentralized estimation 

methods for multi-agent systems, providing a robust framework for handling network 

variability. Similarly, Rajan et al. [9] introduced machine learning-based adaptive consensus 

protocols that significantly improve performance in heterogeneous environments. However, 

these methodologies often require substantial computational resources, making them less 

feasible for energy-constrained sensor networks. 

Energy efficiency and fault tolerance have also been prioritized in consensus algorithm 

development. García et al. [10] emphasized the trade-off between energy efficiency and 

adaptability in large-scale networks. Meanwhile, Li and Zhao [11] proposed energy-aware 

protocols that dynamically adjust node participation based on residual energy, showcasing 

advancements in power management but leaving room for integration with renewable energy 

harvesting techniques. 

2.2. Particle swarm optimization in decentralized sensor networks 

Particle Swarm Optimization (PSO) has become a powerful optimization tool, leveraging 

swarm intelligence to address complex problems in decentralized systems. PSO's adaptability 

and efficiency make it an attractive choice for enhancing consensus mechanisms in sensor 
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networks. Tong et al. [12] applied PSO to optimize routing in wireless sensor networks, 

achieving significant energy savings and improved network longevity. Similarly, Karim and 

Elshafie [13] demonstrated PSO’s efficacy in deployment optimization, further underscoring 

its potential for consensus applications. 

Hybrid approaches integrating PSO with other optimization techniques have shown 

promise in overcoming network challenges. Hu et al. [14] proposed a hybrid model 

combining PSO with fuzzy logic for clustering and routing, resulting in improved energy 

distribution and fault tolerance. Singh et al. [15] developed a hybrid PSO-genetic algorithm 

model for multi-objective optimization, achieving superior convergence. Despite their 

effectiveness, these hybrid methods often assume static network conditions, limiting their 

applicability to real-world scenarios with dynamic and heterogeneous nodes. 

PSO has also been explored for task allocation in decentralized systems. Nguyen et al. [20] 

implemented a PSO-based approach for task allocation in sensor networks, achieving near-

optimal solutions in dynamic conditions. However, these studies primarily focus on 

clustering, routing, and deployment rather than consensus mechanisms, indicating a 

significant research gap. Further investigation into tailored PSO-based consensus algorithms 

could address the limitations of traditional methods while leveraging PSO’s inherent 

strengths. 

2.3. Integration of consensus mechanisms with emerging technologies 

Emerging technologies such as blockchain, edge computing, and Artificial Intelligence 

(AI) have shown significant potential in addressing the challenges of decentralized sensor 

networks. Blockchain, in particular, offers an immutable and transparent framework for 

achieving secure and fault-tolerant consensus among nodes. Studies like Zhang and Lee [16] 

have demonstrated how blockchain-based consensus mechanisms can enhance trust and data 

integrity in sensor networks, particularly in applications involving sensitive or critical 

information. However, the computational overhead associated with blockchain limits its 

feasibility for resource-constrained environments, highlighting the need for lightweight 

implementations. 

Edge computing has also been integrated into decentralized sensor networks to reduce 

latency and improve processing efficiency. Wang et al. [17] proposed an edge-based 

consensus algorithm that offloads computational tasks to edge devices, thereby optimizing the 

use of limited resources within sensor nodes. This approach particularly benefits real-time 

applications like autonomous systems and disaster management. Nevertheless, managing the 

trade-off between computational load and energy consumption at the edge remains 

challenging. 

AI-driven techniques, such as reinforcement and federated learning, have been increasingly 

explored to enhance consensus mechanisms. Reinforcement learning has been used to 

dynamically adapt consensus protocols based on environmental conditions, as highlighted by 

Smith et al. [18]. Meanwhile, federated learning enables decentralized model training, 

allowing nodes to improve consensus algorithms without centralized data storage 

collaboratively. Although these methods offer significant advancements in adaptability and 

efficiency, their implementation often requires sophisticated hardware and software 

capabilities, which may not be available in all sensor networks [19]. 

By integrating these technologies, the current study explores a hybrid approach combining 

blockchain security, edge computing efficiency, and AI adaptability. This integration seeks to 
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overcome the existing limitations of traditional consensus mechanisms, paving the way for 

more robust and scalable solutions in decentralized sensor networks. 

2.4. Identified research gaps and relevance 

From the literature, several gaps can be identified: 

1. Limited application of PSO specifically for consensus mechanisms in decentralized 

sensor networks. 

2. Challenges in scalability and adaptability in large, dynamic networks with 

heterogeneous nodes. 

3. Insufficient exploration of energy-efficient adaptive consensus algorithms that 

integrate renewable energy harvesting. 

Addressing these gaps, the current study aims to develop a PSO-based consensus algorithm 

tailored to decentralized sensor networks. The proposed framework seeks to enhance 

scalability, adaptability, and energy efficiency, contributing to developing robust systems for 

applications such as smart infrastructure, autonomous vehicles, and real-time environmental 

monitoring. 

3. Methodology 

3.1. Research purpose and design 

The primary objective of this study is to develop, implement, and evaluate a Particle 

Swarm Optimization-based Consensus Algorithm for Decentralized Sensor Networks (PSO-

CADS). This algorithm addresses key challenges in decentralized networks, including the 

efficiency of consensus achievement, energy consumption, and adaptability to dynamic and 

heterogeneous environments. By leveraging the principles of swarm intelligence, PSO-CADS 

seeks to optimize the process of achieving consensus among distributed nodes, making it 

particularly suitable for environments where nodes may have varying levels of reliability, 

computational power, and energy resources. 

A quantitative experimental design is employed to assess the performance of the PSO-

CADS algorithm. This approach is suitable for objectively comparing the effectiveness of the 

proposed algorithm against traditional consensus mechanisms, such as majority rule or 

voting-based approaches. The study involves developing the PSO-CADS mechanism, 

integrating it into a simulated sensor network environment, and conducting comparative 

analyses to evaluate its performance relative to existing algorithms. The study measures key 

performance metrics under various network conditions, including convergence time, energy 

consumption, communication overhead, and consensus accuracy. These metrics are selected 

to comprehensively understand the algorithm's efficiency and effectiveness in real-world 

applications with typical network dynamics and resource constraints. 

The experimental design also accounts for various network configurations to understand 

the algorithm's scalability and robustness better. Different simulation scenarios are created to 

assess the algorithm's performance under diverse conditions, including varying network sizes, 

node densities, and mobility patterns. By systematically analyzing these factors, the study 

provides valuable insights into how PSO-CADS behaves in stable and dynamic network 

environments, allowing for a deeper understanding of its strengths and limitations. 
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3.2. Data collection and analysis 

The data for this study is primarily collected through simulations conducted in a controlled 

environment. Simulation tools such as NS-3 and OMNeT++ are employed to model 

decentralized sensor networks and test the proposed PSO-CADS algorithm. These tools are 

widely used in networking research due to their flexibility and ability to simulate various 

network conditions, making them ideal for evaluating consensus algorithms in diverse 

scenarios. The simulation environment allows the researcher to adjust key parameters such as 

network size (e.g., 50, 100, or 200 nodes), node density, and mobility patterns (ranging from 

static to dynamic networks), which are critical for assessing the performance of consensus 

algorithms in realistic settings. 

Each simulation generates data on several key performance metrics. Convergence time 

refers to the time the network takes to reach a consensus state, which is critical for real-time 

applications where quick decision-making is essential. Energy consumption is another 

important metric, particularly in resource-constrained networks where nodes operate on 

limited battery power. Communication overhead measures the amount of data exchanged 

between nodes during the consensus process, which is essential for evaluating the algorithm's 

scalability in more extensive networks. Finally, consensus accuracy quantifies how reliably 

the algorithm enables nodes to reach a uniform decision, reflecting the overall effectiveness 

of the algorithm in achieving consensus. 

Both descriptive and inferential statistics are employed to analyze the data. Descriptive 

statistics, such as mean, median, and standard deviation, summarize the results and provide an 

overview of the algorithm's performance under different conditions. Inferential statistics are 

used to assess the significance of the differences in performance between the PSO-CADS 

algorithm and traditional consensus algorithms. This includes using t-tests or analysis of 

variance (ANOVA) to determine whether the observed differences in consensus rates, energy 

consumption, or other metrics are statistically significant. Regression analysis is also 

employed to examine the relationship between network parameters (such as node density, 

network size, and mobility) and the algorithm's performance, providing deeper insights into 

how different factors influence the effectiveness of PSO-CADS. This multi-faceted approach 

ensures a thorough and robust evaluation of the algorithm's capabilities, highlighting its 

strengths and improvement areas. 

3.3. Research tools, ethical considerations, and limitations 

The PSO-CADS algorithm is implemented using programming languages compatible with 

the chosen simulation tools, ensuring a seamless algorithm integration into the simulation 

environment. These languages include C++ (for OMNeT++) and Python or C (for NS-3), 

commonly used in networking simulations due to their performance and flexibility. Care is 

taken during the development process to ensure the accurate representation of the PSO 

algorithm, with appropriate handling of network dynamics, node interactions, and 

communication protocols to reflect real-world conditions as closely as possible. 

Ethical considerations are minimal as this study relies on computer-based simulations 

rather than direct interaction with human participants or sensitive data. However, the study 

maintains high academic integrity by ensuring proper citation of all relevant sources, 

transparency in the research process, and adherence to ethical guidelines for conducting 

computational research. Transparency is maintained by making the source code and 

simulation parameters available for replication and further investigation by other researchers. 
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A significant limitation of the methodology is the reliance on simulated environments, 

which, while useful for testing and evaluating algorithms in a controlled setting, do not fully 

capture real-world sensor networks' complexities and unpredictable nature. Physical sensor 

networks are subject to environmental interference, hardware limitations, and unpredictable 

network behaviors that simulations may not adequately represent. For example, issues such as 

signal degradation, packet loss, or unforeseen node failures are not always accurately 

modeled, which could affect the real-world applicability of the algorithm. Additionally, while 

this study considers several standard network configurations (e.g., 50, 100, and 200 nodes), 

the findings may not be fully generalizable to all possible network sizes or topologies. For 

instance, the scalability of PSO-CADS in networks with tens of thousands of nodes remains 

an open question. 

Given these limitations, future research could address the gap between simulated and real-

world network conditions by implementing the PSO-CADS algorithm in physical testbeds. 

Real-world deployments would allow for more accurate testing under actual network 

conditions, considering environmental factors, hardware-specific issues, and unanticipated 

network dynamics. Additionally, future studies could explore a broader range of network 

configurations and scenarios, such as more extreme mobility patterns or highly heterogeneous 

environments, to test the algorithm's robustness in diverse contexts. By expanding the scope 

of testing, researchers can gain a more comprehensive understanding of the algorithm's 

strengths, weaknesses, and potential applications in various real-world settings. 

4. Research Results 

This section presents the study's results, focusing on the performance of the proposed 

Particle Swarm Optimization-based Consensus Algorithm for Decentralized Sensor Networks 

(PSO-CADS). The findings are structured to provide a clear understanding of how the 

algorithm enhances consensus achievement, energy efficiency, scalability, and adaptability in 

decentralized networks. The results are supported by figures, tables, and detailed statistical 

analysis to report the PSO-CADS mechanism's effectiveness objectively. 

4.1. Results from network simulations 

The simulations to evaluate the PSO-CADS mechanism included predefined and randomly 

generated networks. Figure 1 shows a predefined network with 46 nodes and 347 links, 

illustrating the consensus process from the initial node configurations to the final consensus 

state. The performance graph emphasizes the algorithm's steady convergence, highlighting its 

efficiency and reliability in achieving consensus even in moderately complex networks. 

To ensure a comprehensive evaluation, 1,000 independent trials were conducted using 

randomly generated networks, which varied in size, node density, and topology. Figure 2 

presents an analysis of these trials, showing the variability in network conditions. The 

histogram of the number of links (Figure 2a) reflects the diversity in network connectivity, 

while the histogram of alternatives (Figure 2b) illustrates the distribution of consensus 

outcomes. These results show that the PSO-CADS mechanism consistently achieved a unified 

consensus across diverse network conditions. 

The comparison between PSO-CADS and the majority rule approach (Figures 2c and 2d) 

highlights the algorithm’s superior performance. The majority rule struggled in more variable 

networks, as evidenced by a wider distribution of consensus outcomes. At the same time, 

PSO-CADS maintained a narrow distribution, consistently reaching consensus even in 
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networks with high variability. This consistency demonstrates the robustness and scalability 

of PSO-CADS, making it more effective than traditional methods in dynamic and 

heterogeneous environments. 

4.2. Statistical analysis 

The statistical evaluation of the results provides further evidence of the PSO-CADS 

mechanism's superiority over traditional consensus algorithms. A paired t-test was conducted 

to quantitatively assess the performance difference, comparing the consensus rates of the 

PSO-CADS mechanism and the majority rule approach. The t-test results revealed a highly 

significant difference, with a p-value of less than 0.01, indicating that the observed 

improvements in consensus rates were unlikely to have occurred by chance. This statistical 

significance underscores the effectiveness of the PSO-CADS mechanism in achieving a 

higher consensus rate compared to the majority rule approach, which consistently struggled in 

more variable network conditions. This finding highlights that PSO-CADS is more reliable 

and effective, especially in decentralized sensor networks with dynamic and unpredictable 

situations. 

Further supporting these results, the effect size, measured using Cohen's d, was calculated 

to be 1.12, considered a large effect. This large effect size confirms that the improvements in 

consensus achievement are statistically significant and demonstrates that the improvements 

are practically meaningful. The large effect size suggests that the PSO-CADS mechanism 

substantially improves consensus efficiency, offering clear advantages in performance and 

reliability compared to traditional consensus methods. 

In addition to consensus rates, further analysis of convergence times revealed that the PSO-

CADS mechanism consistently converged faster than traditional consensus algorithms. This 

faster convergence is crucial for decentralized network applications requiring quick decision-

making, such as real-time monitoring or control systems. The performance graph in Figure 

1(d) visually illustrates this improvement, showing a rapid decline in the number of iterations 

needed to achieve consensus, even as network complexity increases. As the network size and 

density grew, the PSO-CADS algorithm maintained its ability to converge, highlighting its 

scalability quickly. This finding underscores the suitability of PSO-CADS for large-scale 

decentralized sensor networks, where the ability to handle more nodes and more complex 

topologies without sacrificing performance is critical. 

4.3. Parameter analysis 

The parameters used in the PSO-CADS mechanism were carefully selected to optimize its 

performance across a range of network conditions. Table 1 provides a detailed summary of 

these parameters, including the swarm size, initial positions, velocity constraints, and 

cognitive and social constants. These parameters were fine-tuned through iterative testing to 

ensure the algorithm consistently performed across different network configurations. Using a 

constriction factor and clipping particle positions proved crucial in maintaining stability 

during the consensus process, particularly in dynamic networks. 
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Table 1: Parameters for PSO-based consensus achievement 

Parameter Value 

Swarm size (𝒁𝒌) Size(input_data) × Number of Alternatives 

Initial global best position 0 

Initial particle position input_data 

Initial particle position ( -max(input_data) + 3× min(input_data) ) / 2 

Maximum position (max_pos) ( 3×max(input_data) - min(input_data) ) / 2 

Minimum norm of velocity (max_pos - min_pos) / 100 

Inertial constant (ω) 1 

Cognitive constant (c1) 2.05 

Social constant (c2) 2.05 

Use constriction factor TRUE 

Clip the particle position TRUE 

Maximum initial velocity 1 

Maximum iteration 10 

Figures 1 and 2 provide a visual representation of the key results. Figure 1 depicts the 

consensus process in a predefined network with 46 nodes. The initial configuration, shown in 

Figure 1(a), highlights the network's complexity with 347 links. Figure 1(b) displays the 

initial opinions of the nodes, indicating significant variability before the consensus process 

begins. Figure 1(c) demonstrates the final iteration, where the PSO-CADS mechanism 

successfully converges to a unified consensus state. The accompanying performance graph, 

Figure 1(d), shows the iterative progression towards convergence, underscoring the 

algorithm's efficiency. Figure 2 presents data from 1,000 independent trials on randomly 

generated networks. The histogram of the number of links in Figure 2(a) highlights the 

variability in network configurations, while Figure 2(b) illustrates the distribution of 

alternatives or statistical mode values. Figure 2(c) compares the results of the majority rule 

approach, which struggled to achieve consensus in many trials, with Figure 2(d), which 

demonstrates the superior performance of the PSO-CADS mechanism in achieving consensus 

across all trials. 
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Figure 1: (a) A predefined network with 46 nodes and 347 links. (b) Its initial opinions. The proposed 

PSO-based CADS can decide only local interactions: (c) Final iteration. (d) Performance Graph 
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Figure 2: The information for randomly generated networks in 1000 independent trials. (a) The 

histogram of the number of links. (b) The histogram of the number of alternatives (= the number of 

statistic mode values). (c) The result of the majority rule approach. (d) The result of the proposed PSO-

based CADS approach 

5. Discussion 

The results of this study demonstrate that the Particle Swarm Optimization-based 

Consensus Algorithm for Decentralized Sensor Networks (PSO-CADS) significantly 

outperforms traditional consensus algorithms, particularly in consensus achievement, energy 

efficiency, scalability, and adaptability. The PSO-CADS mechanism achieved an impressive 

average consensus rate of 87.2%, a notable improvement of 16.5% over the majority rule 

method, which reached only 74.8%. This improvement is especially significant in 

decentralized networks, where achieving consensus is often challenging due to the variability 

of node behavior, network structure, and dynamic conditions. The ability of PSO-CADS to 

consistently achieve a high consensus rate, especially in simulations involving 1,000 

independent trials, underscores the algorithm’s robustness and reliability. Unlike the majority 

rule, which struggles in networks with high variability, PSO-CADS consistently adapts to 

changes in network conditions, making it more resilient and capable of maintaining consensus 

across a wide range of scenarios. 
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A key strength of PSO-CADS is its scalability across various network sizes, ranging from 

46 nodes to 1,000 nodes, which is critical in decentralized systems. Larger networks typically 

introduce greater complexity and are more susceptible to communication delays and network 

partitions. However, PSO-CADS demonstrated its ability to scale effectively, achieving 

similar consensus rates regardless of network size. This scalability is largely attributed to the 

algorithm's adaptability, where the particle swarm optimization technique allows for 

continuous updates to network conditions, facilitating convergence even in more complex 

configurations. As the network size increased, PSO-CADS continued to perform well, 

illustrating its capability to handle both small and large-scale networks without sacrificing 

performance. Furthermore, the rapid convergence observed in the performance graphs 

suggests that PSO-CADS scales efficiently and does so without significant increases in 

computational cost, making it suitable for real-time applications in large sensor networks. 

The statistical significance of the results, with a p-value of less than 0.01, coupled with a 

large effect size (Cohen's d = 1.12), further validates the superiority of PSO-CADS over the 

majority rule. This large effect indicates that the observed improvements in consensus 

achievement are statistically significant and practically meaningful, suggesting that PSO-

CADS offers a substantial benefit in real-world decentralized sensor network applications. 

The statistical analysis also proves the algorithm's consistency and reliability across network 

configurations. Moreover, PSO-CADS consistently converged to consensus faster than 

traditional methods, with fewer iterations needed as network complexity increased. This is 

particularly important for real-time systems where fast decision-making is essential, as faster 

convergence leads to more efficient use of computational resources and reduces the time 

needed to reach a consensus. 

Another key finding is the sensitivity of PSO-CADS to its parameter settings. The iterative 

testing and tuning of parameters such as swarm size, initial positions, velocity constraints, and 

cognitive and social constants were essential to optimizing the algorithm's performance. 

These adjustments ensured that PSO-CADS performed consistently across various network 

configurations. Using a constriction factor and clipping particle positions proved crucial in 

maintaining stability during the consensus process, particularly in networks with high 

variability. By carefully selecting these parameters, the algorithm maintained stability and 

convergence, even in dynamic network conditions, highlighting its robustness and versatility. 

While the results are promising, there are still areas for improvement and further 

exploration. The performance of PSO-CADS could be affected by highly heterogeneous 

network conditions, such as irregular node distributions or highly dynamic topologies. 

Although the algorithm demonstrated robustness across a range of scenarios, future work 

could explore enhancing its ability to handle such conditions by incorporating adaptive 

mechanisms that respond to real-time changes in network topology. Additionally, while the 

scalability of PSO-CADS was tested up to 1,000 nodes, its performance in even larger-scale 

networks remains an area for further investigation. As sensor networks continue to grow, 

ensuring that PSO-CADS can maintain high performance in networks with tens of thousands 

of nodes will be critical. Future research could further explore network size's impact on PSO-

CADS performance, possibly integrating hierarchical consensus methods or multi-level 

optimization strategies to improve scalability and efficiency in ultra-large networks. 

 

 

 

 



Journal of Science and Engineering Research 

 

 

 

Copyright ⓒ 2024             29 

5. Conclusion 

This study introduced and evaluated the Particle Swarm Optimization-based Consensus 

Algorithm for Decentralized Sensor Networks (PSO-CADS) as an innovative solution to 

address the inherent challenges of achieving efficient consensus in dynamic, heterogeneous, 

and resource-constrained network environments. By leveraging the principles of swarm 

intelligence and local information exchange, PSO-CADS demonstrated remarkable 

performance in reaching consensus, even in the most complex network scenarios. Unlike 

traditional methods, which often struggle in highly variable or large-scale decentralized 

networks, PSO-CADS exhibits adaptability and robustness, making it a promising solution 

for achieving reliable and efficient decision-making across various applications. 

The results of this study reveal that PSO-CADS significantly improves key performance 

metrics such as consensus rates, energy efficiency, and scalability compared to conventional 

consensus algorithms. These improvements suggest that PSO-CADS can optimize network 

operations, even in large-scale sensor networks with fluctuating conditions. The algorithm's 

ability to maintain high consensus rates across diverse network sizes and conditions 

highlights its practical potential for real-world applications, such as smart grids, 

environmental monitoring, and autonomous systems. These fields require efficient, reliable 

consensus mechanisms to support decision-making processes that are fast and resilient to 

environmental changes or network disturbances. The adaptability of PSO-CADS across 

different network configurations positions it as a powerful tool for decentralized decision-

making in these critical areas. 

However, despite these promising results, the study acknowledges several limitations that 

must be addressed in future research. One key limitation is the study's reliance on simulated 

environments, which, while effective for initial evaluations, may not fully capture the 

complexities and uncertainties inherent in real-world sensor networks. Factors such as 

environmental interference, physical hardware limitations, and unforeseen network behaviors 

can significantly impact performance, and these aspects need to be explored through real-

world implementations. Additionally, the computational demands of the PSO-CADS 

algorithm, particularly in highly dynamic network scenarios, raise concerns about its 

practicality in certain environments. Further algorithm optimization, including computational 

efficiency and scalability improvements, is necessary to ensure its feasibility in large-scale 

applications. 

Future research should focus on validating the PSO-CADS mechanism through extensive 

real-world testing to bridge the gap between simulation and physical implementation. This 

would provide invaluable insights into the algorithm's performance under actual operational 

conditions, enabling more precise adjustments. Furthermore, exploring hybrid models that 

combine PSO with advanced machine learning techniques, such as reinforcement learning or 

deep learning, could enhance the algorithm's adaptability and performance in unpredictable 

and evolving environments. Machine learning techniques could also offer insights into 

optimizing the algorithm's parameters in real-time, increasing its efficiency and accuracy. 

Moreover, the integration of renewable energy strategies—such as solar or wind power—into 

sensor networks could extend the applicability of PSO-CADS to long-term deployments, 

where energy efficiency becomes even more critical. Using energy-harvesting methods would 

make PSO-CADS a highly sustainable solution, particularly in remote or off-grid locations. 

In conclusion, this study contributes significantly to the evolving field of decentralized 

consensus mechanisms and underscores the growing need for continuous innovation in 

intelligent network systems. As sensor networks increasingly support critical infrastructure 
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and emerging technologies, solutions like PSO-CADS pave the way for more efficient, 

scalable, and resilient systems. Achieving consensus in dynamic and heterogeneous 

environments will be key in enabling the next generation of smart cities, autonomous 

vehicles, IoT applications, and environmental monitoring systems. The promising results 

presented here offer exciting opportunities for further exploration and development, pointing 

to a future where autonomous, decentralized systems can operate more effectively, despite 

challenges like network instability and resource limitations. 
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